Nobukazu Fukuda


pdf bib
Robust Backed-off Estimation of Out-of-Vocabulary Embeddings
Nobukazu Fukuda | Naoki Yoshinaga | Masaru Kitsuregawa
Findings of the Association for Computational Linguistics: EMNLP 2020

Out-of-vocabulary (oov) words cause serious troubles in solving natural language tasks with a neural network. Existing approaches to this problem resort to using subwords, which are shorter and more ambiguous units than words, in order to represent oov words with a bag of subwords. In this study, inspired by the processes for creating words from known words, we propose a robust method of estimating oov word embeddings by referring to pre-trained word embeddings for known words with similar surfaces to target oov words. We collect known words by segmenting oov words and by approximate string matching, and we then aggregate their pre-trained embeddings. Experimental results show that the obtained oov word embeddings improve not only word similarity tasks but also downstream tasks in Twitter and biomedical domains where oov words often appear, even when the computed oov embeddings are integrated into a bert-based strong baseline.