Nikolaos Aletras


2020

pdf bib
Analyzing Political Parody in Social Media
Antonios Maronikolakis | Danae Sánchez Villegas | Daniel Preotiuc-Pietro | Nikolaos Aletras
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

Parody is a figurative device used to imitate an entity for comedic or critical purposes and represents a widespread phenomenon in social media through many popular parody accounts. In this paper, we present the first computational study of parody. We introduce a new publicly available data set of tweets from real politicians and their corresponding parody accounts. We run a battery of supervised machine learning models for automatically detecting parody tweets with an emphasis on robustness by testing on tweets from accounts unseen in training, across different genders and across countries. Our results show that political parody tweets can be predicted with an accuracy up to 90%. Finally, we identify the markers of parody through a linguistic analysis. Beyond research in linguistics and political communication, accurately and automatically detecting parody is important to improving fact checking for journalists and analytics such as sentiment analysis through filtering out parodical utterances.

pdf bib
LEGAL-BERT: The Muppets straight out of Law School
Ilias Chalkidis | Manos Fergadiotis | Prodromos Malakasiotis | Nikolaos Aletras | Ion Androutsopoulos
Findings of the Association for Computational Linguistics: EMNLP 2020

BERT has achieved impressive performance in several NLP tasks. However, there has been limited investigation on its adaptation guidelines in specialised domains. Here we focus on the legal domain, where we explore several approaches for applying BERT models to downstream legal tasks, evaluating on multiple datasets. Our findings indicate that the previous guidelines for pre-training and fine-tuning, often blindly followed, do not always generalize well in the legal domain. Thus we propose a systematic investigation of the available strategies when applying BERT in specialised domains. These are: (a) use the original BERT out of the box, (b) adapt BERT by additional pre-training on domain-specific corpora, and (c) pre-train BERT from scratch on domain-specific corpora. We also propose a broader hyper-parameter search space when fine-tuning for downstream tasks and we release LEGAL-BERT, a family of BERT models intended to assist legal NLP research, computational law, and legal technology applications.

pdf bib
Complaint Identification in Social Media with Transformer Networks
Mali Jin | Nikolaos Aletras
Proceedings of the 28th International Conference on Computational Linguistics

Complaining is a speech act extensively used by humans to communicate a negative inconsistency between reality and expectations. Previous work on automatically identifying complaints in social media has focused on using feature-based and task-specific neural network models. Adapting state-of-the-art pre-trained neural language models and their combinations with other linguistic information from topics or sentiment for complaint prediction has yet to be explored. In this paper, we evaluate a battery of neural models underpinned by transformer networks which we subsequently combine with linguistic information. Experiments on a publicly available data set of complaints demonstrate that our models outperform previous state-of-the-art methods by a large margin achieving a macro F1 up to 87.

pdf bib
An Empirical Study on Large-Scale Multi-Label Text Classification Including Few and Zero-Shot Labels
Ilias Chalkidis | Manos Fergadiotis | Sotiris Kotitsas | Prodromos Malakasiotis | Nikolaos Aletras | Ion Androutsopoulos
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

Large-scale Multi-label Text Classification (LMTC) has a wide range of Natural Language Processing (NLP) applications and presents interesting challenges. First, not all labels are well represented in the training set, due to the very large label set and the skewed label distributions of datasets. Also, label hierarchies and differences in human labelling guidelines may affect graph-aware annotation proximity. Finally, the label hierarchies are periodically updated, requiring LMTC models capable of zero-shot generalization. Current state-of-the-art LMTC models employ Label-Wise Attention Networks (LWANs), which (1) typically treat LMTC as flat multi-label classification; (2) may use the label hierarchy to improve zero-shot learning, although this practice is vastly understudied; and (3) have not been combined with pre-trained Transformers (e.g. BERT), which have led to state-of-the-art results in several NLP benchmarks. Here, for the first time, we empirically evaluate a battery of LMTC methods from vanilla LWANs to hierarchical classification approaches and transfer learning, on frequent, few, and zero-shot learning on three datasets from different domains. We show that hierarchical methods based on Probabilistic Label Trees (PLTs) outperform LWANs. Furthermore, we show that Transformer-based approaches outperform the state-of-the-art in two of the datasets, and we propose a new state-of-the-art method which combines BERT with LWAN. Finally, we propose new models that leverage the label hierarchy to improve few and zero-shot learning, considering on each dataset a graph-aware annotation proximity measure that we introduce.

pdf bib
Quality In, Quality Out: Learning from Actual Mistakes
Frederic Blain | Nikolaos Aletras | Lucia Specia
Proceedings of the 22nd Annual Conference of the European Association for Machine Translation

Approaches to Quality Estimation (QE) of machine translation have shown promising results at predicting quality scores for translated sentences. However, QE models are often trained on noisy approximations of quality annotations derived from the proportion of post-edited words in translated sentences instead of direct human annotations of translation errors. The latter is a more reliable ground-truth but more expensive to obtain. In this paper, we present the first attempt to model the task of predicting the proportion of actual translation errors in a sentence while minimising the need for direct human annotation. For that purpose, we use transfer-learning to leverage large scale noisy annotations and small sets of high-fidelity human annotated translation errors to train QE models. Experiments on four language pairs and translations obtained by statistical and neural models show consistent gains over strong baselines.

pdf bib
Unsupervised Quality Estimation for Neural Machine Translation
Marina Fomicheva | Shuo Sun | Lisa Yankovskaya | Frédéric Blain | Francisco Guzmán | Mark Fishel | Nikolaos Aletras | Vishrav Chaudhary | Lucia Specia
Transactions of the Association for Computational Linguistics, Volume 8

Quality Estimation (QE) is an important component in making Machine Translation (MT) useful in real-world applications, as it is aimed to inform the user on the quality of the MT output at test time. Existing approaches require large amounts of expert annotated data, computation, and time for training. As an alternative, we devise an unsupervised approach to QE where no training or access to additional resources besides the MT system itself is required. Different from most of the current work that treats the MT system as a black box, we explore useful information that can be extracted from the MT system as a by-product of translation. By utilizing methods for uncertainty quantification, we achieve very good correlation with human judgments of quality, rivaling state-of-the-art supervised QE models. To evaluate our approach we collect the first dataset that enables work on both black-box and glass-box approaches to QE.

2019

pdf bib
Journalist-in-the-Loop: Continuous Learning as a Service for Rumour Analysis
Twin Karmakharm | Nikolaos Aletras | Kalina Bontcheva
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP): System Demonstrations

Automatically identifying rumours in social media and assessing their veracity is an important task with downstream applications in journalism. A significant challenge is how to keep rumour analysis tools up-to-date as new information becomes available for particular rumours that spread in a social network. This paper presents a novel open-source web-based rumour analysis tool that can continuous learn from journalists. The system features a rumour annotation service that allows journalists to easily provide feedback for a given social media post through a web-based interface. The feedback allows the system to improve an underlying state-of-the-art neural network-based rumour classification model. The system can be easily integrated as a service into existing tools and platforms used by journalists using a REST API.

pdf bib
Neural Legal Judgment Prediction in English
Ilias Chalkidis | Ion Androutsopoulos | Nikolaos Aletras
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

Legal judgment prediction is the task of automatically predicting the outcome of a court case, given a text describing the case’s facts. Previous work on using neural models for this task has focused on Chinese; only feature-based models (e.g., using bags of words and topics) have been considered in English. We release a new English legal judgment prediction dataset, containing cases from the European Court of Human Rights. We evaluate a broad variety of neural models on the new dataset, establishing strong baselines that surpass previous feature-based models in three tasks: (1) binary violation classification; (2) multi-label classification; (3) case importance prediction. We also explore if models are biased towards demographic information via data anonymization. As a side-product, we propose a hierarchical version of BERT, which bypasses BERT’s length limitation.

pdf bib
Automatically Identifying Complaints in Social Media
Daniel Preoţiuc-Pietro | Mihaela Gaman | Nikolaos Aletras
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

Complaining is a basic speech act regularly used in human and computer mediated communication to express a negative mismatch between reality and expectations in a particular situation. Automatically identifying complaints in social media is of utmost importance for organizations or brands to improve the customer experience or in developing dialogue systems for handling and responding to complaints. In this paper, we introduce the first systematic analysis of complaints in computational linguistics. We collect a new annotated data set of written complaints expressed on Twitter. We present an extensive linguistic analysis of complaining as a speech act in social media and train strong feature-based and neural models of complaints across nine domains achieving a predictive performance of up to 79 F1 using distant supervision.

pdf bib
Re-Ranking Words to Improve Interpretability of Automatically Generated Topics
Areej Alokaili | Nikolaos Aletras | Mark Stevenson
Proceedings of the 13th International Conference on Computational Semantics - Long Papers

Topics models, such as LDA, are widely used in Natural Language Processing. Making their output interpretable is an important area of research with applications to areas such as the enhancement of exploratory search interfaces and the development of interpretable machine learning models. Conventionally, topics are represented by their n most probable words, however, these representations are often difficult for humans to interpret. This paper explores the re-ranking of topic words to generate more interpretable topic representations. A range of approaches are compared and evaluated in two experiments. The first uses crowdworkers to associate topics represented by different word rankings with related documents. The second experiment is an automatic approach based on a document retrieval task applied on multiple domains. Results in both experiments demonstrate that re-ranking words improves topic interpretability and that the most effective re-ranking schemes were those which combine information about the importance of words both within topics and their relative frequency in the entire corpus. In addition, close correlation between the results of the two evaluation approaches suggests that the automatic method proposed here could be used to evaluate re-ranking methods without the need for human judgements.

pdf bib
Proceedings of the Natural Legal Language Processing Workshop 2019
Nikolaos Aletras | Elliott Ash | Leslie Barrett | Daniel Chen | Adam Meyers | Daniel Preotiuc-Pietro | David Rosenberg | Amanda Stent
Proceedings of the Natural Legal Language Processing Workshop 2019

pdf bib
Extreme Multi-Label Legal Text Classification: A Case Study in EU Legislation
Ilias Chalkidis | Emmanouil Fergadiotis | Prodromos Malakasiotis | Nikolaos Aletras | Ion Androutsopoulos
Proceedings of the Natural Legal Language Processing Workshop 2019

We consider the task of Extreme Multi-Label Text Classification (XMTC) in the legal domain. We release a new dataset of 57k legislative documents from EURLEX, the European Union’s public document database, annotated with concepts from EUROVOC, a multidisciplinary thesaurus. The dataset is substantially larger than previous EURLEX datasets and suitable for XMTC, few-shot and zero-shot learning. Experimenting with several neural classifiers, we show that BIGRUs with self-attention outperform the current multi-label state-of-the-art methods, which employ label-wise attention. Replacing CNNs with BIGRUs in label-wise attention networks leads to the best overall performance.

2017

pdf bib
Multimodal Topic Labelling
Ionut Sorodoc | Jey Han Lau | Nikolaos Aletras | Timothy Baldwin
Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 2, Short Papers

Topics generated by topic models are typically presented as a list of topic terms. Automatic topic labelling is the task of generating a succinct label that summarises the theme or subject of a topic, with the intention of reducing the cognitive load of end-users when interpreting these topics. Traditionally, topic label systems focus on a single label modality, e.g. textual labels. In this work we propose a multimodal approach to topic labelling using a simple feedforward neural network. Given a topic and a candidate image or textual label, our method automatically generates a rating for the label, relative to the topic. Experiments show that this multimodal approach outperforms single-modality topic labelling systems.

2015

pdf bib
An analysis of the user occupational class through Twitter content
Daniel Preoţiuc-Pietro | Vasileios Lampos | Nikolaos Aletras
Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

pdf bib
A Hybrid Distributional and Knowledge-based Model of Lexical Semantics
Nikolaos Aletras | Mark Stevenson
Proceedings of the Fourth Joint Conference on Lexical and Computational Semantics

2014

pdf bib
Labelling Topics using Unsupervised Graph-based Methods
Nikolaos Aletras | Mark Stevenson
Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)

pdf bib
Predicting and Characterising User Impact on Twitter
Vasileios Lampos | Nikolaos Aletras | Daniel Preoţiuc-Pietro | Trevor Cohn
Proceedings of the 14th Conference of the European Chapter of the Association for Computational Linguistics

pdf bib
Measuring the Similarity between Automatically Generated Topics
Nikolaos Aletras | Mark Stevenson
Proceedings of the 14th Conference of the European Chapter of the Association for Computational Linguistics, volume 2: Short Papers

2013

pdf bib
Evaluating Topic Coherence Using Distributional Semantics
Nikolaos Aletras | Mark Stevenson
Proceedings of the 10th International Conference on Computational Semantics (IWCS 2013) – Long Papers

pdf bib
PATHS: A System for Accessing Cultural Heritage Collections
Eneko Agirre | Nikolaos Aletras | Paul Clough | Samuel Fernando | Paula Goodale | Mark Hall | Aitor Soroa | Mark Stevenson
Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics: System Demonstrations

pdf bib
Representing Topics Using Images
Nikolaos Aletras | Mark Stevenson
Proceedings of the 2013 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

pdf bib
UBC_UOS-TYPED: Regression for typed-similarity
Eneko Agirre | Nikolaos Aletras | Aitor Gonzalez-Agirre | German Rigau | Mark Stevenson
Second Joint Conference on Lexical and Computational Semantics (*SEM), Volume 1: Proceedings of the Main Conference and the Shared Task: Semantic Textual Similarity

2012

pdf bib
Computing Similarity between Cultural Heritage Items using Multimodal Features
Nikolaos Aletras | Mark Stevenson
Proceedings of the 6th Workshop on Language Technology for Cultural Heritage, Social Sciences, and Humanities