Niket Tandon


2020

pdf bib
What-if I ask you to explain: Explaining the effects of perturbations in procedural text
Dheeraj Rajagopal | Niket Tandon | Peter Clark | Bhavana Dalvi | Eduard Hovy
Findings of the Association for Computational Linguistics: EMNLP 2020

Our goal is to explain the effects of perturbations in procedural text, e.g., given a passage describing a rabbit’s life cycle, explain why illness (the perturbation) may reduce the rabbit population (the effect). Although modern systems are able to solve the original prediction task well (e.g., illness results in less rabbits), the explanation task - identifying the causal chain of events from perturbation to effect - remains largely unaddressed, and is the goal of this research. We present QUARTET, a system that constructs such explanations from paragraphs, by modeling the explanation task as a multitask learning problem. QUARTET constructs explanations from the sentences in the procedural text, achieving ~18 points better on explanation accuracy compared to several strong baselines on a recent process comprehension benchmark. On an end task on this benchmark, we show a surprising finding that good explanations do not have to come at the expense of end task performance, in fact leading to a 7% F1 improvement over SOTA.

pdf bib
A Dataset for Tracking Entities in Open Domain Procedural Text
Niket Tandon | Keisuke Sakaguchi | Bhavana Dalvi | Dheeraj Rajagopal | Peter Clark | Michal Guerquin | Kyle Richardson | Eduard Hovy
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

We present the first dataset for tracking state changes in procedural text from arbitrary domains by using an unrestricted (open) vocabulary. For example, in a text describing fog removal using potatoes, a car window may transition between being foggy, sticky, opaque, and clear. Previous formulations of this task provide the text and entities involved, and ask how those entities change for just a small, pre-defined set of attributes (e.g., location), limiting their fidelity. Our solution is a new task formulation where given just a procedural text as input, the task is to generate a set of state change tuples (entity, attribute, before-state, after-state) for each step, where the entity, attribute, and state values must be predicted from an open vocabulary. Using crowdsourcing, we create OPENPI, a high-quality (91.5% coverage as judged by humans and completely vetted), and large-scale dataset comprising 29,928 state changes over 4,050 sentences from 810 procedural real-world paragraphs from WikiHow.com. A current state-of-the-art generation model on this task achieves 16.1% F1 based on BLEU metric, leaving enough room for novel model architectures.

2019

pdf bib
Everything Happens for a Reason: Discovering the Purpose of Actions in Procedural Text
Bhavana Dalvi | Niket Tandon | Antoine Bosselut | Wen-tau Yih | Peter Clark
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

Our goal is to better comprehend procedural text, e.g., a paragraph about photosynthesis, by not only predicting what happens, but *why* some actions need to happen before others. Our approach builds on a prior process comprehension framework for predicting actions’ effects, to also identify subsequent steps that those effects enable. We present our new model (XPAD) that biases effect predictions towards those that (1) explain more of the actions in the paragraph and (2) are more plausible with respect to background knowledge. We also extend an existing benchmark dataset for procedural text comprehension, ProPara, by adding the new task of explaining actions by predicting their dependencies. We find that XPAD significantly outperforms prior systems on this task, while maintaining the performance on the original task in ProPara. The dataset is available at http://data.allenai.org/propara

pdf bib
WIQA: A dataset for “What if...” reasoning over procedural text
Niket Tandon | Bhavana Dalvi | Keisuke Sakaguchi | Peter Clark | Antoine Bosselut
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

We introduce WIQA, the first large-scale dataset of “What if...” questions over procedural text. WIQA contains a collection of paragraphs, each annotated with multiple influence graphs describing how one change affects another, and a large (40k) collection of “What if...?” multiple-choice questions derived from these. For example, given a paragraph about beach erosion, would stormy weather hasten or decelerate erosion? WIQA contains three kinds of questions: perturbations to steps mentioned in the paragraph; external (out-of-paragraph) perturbations requiring commonsense knowledge; and irrelevant (no effect) perturbations. We find that state-of-the-art models achieve 73.8% accuracy, well below the human performance of 96.3%. We analyze the challenges, in particular tracking chains of influences, and present the dataset as an open challenge to the community.

pdf bib
Domain Adaptation of SRL Systems for Biological Processes
Dheeraj Rajagopal | Nidhi Vyas | Aditya Siddhant | Anirudha Rayasam | Niket Tandon | Eduard Hovy
Proceedings of the 18th BioNLP Workshop and Shared Task

Domain adaptation remains one of the most challenging aspects in the wide-spread use of Semantic Role Labeling (SRL) systems. Current state-of-the-art methods are typically trained on large-scale datasets, but their performances do not directly transfer to low-resource domain-specific settings. In this paper, we propose two approaches for domain adaptation in the biological domain that involves pre-training LSTM-CRF based on existing large-scale datasets and adapting it for a low-resource corpus of biological processes. Our first approach defines a mapping between the source labels and the target labels, and the other approach modifies the final CRF layer in sequence-labeling neural network architecture. We perform our experiments on ProcessBank dataset which contains less than 200 paragraphs on biological processes. We improve over the previous state-of-the-art system on this dataset by 21 F1 points. We also show that, by incorporating event-event relationship in ProcessBank, we are able to achieve an additional 2.6 F1 gain, giving us possible insights into how to improve SRL systems for biological process using richer annotations.

pdf bib
Be Consistent! Improving Procedural Text Comprehension using Label Consistency
Xinya Du | Bhavana Dalvi | Niket Tandon | Antoine Bosselut | Wen-tau Yih | Peter Clark | Claire Cardie
Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)

Our goal is procedural text comprehension, namely tracking how the properties of entities (e.g., their location) change with time given a procedural text (e.g., a paragraph about photosynthesis, a recipe). This task is challenging as the world is changing throughout the text, and despite recent advances, current systems still struggle with this task. Our approach is to leverage the fact that, for many procedural texts, multiple independent descriptions are readily available, and that predictions from them should be consistent (label consistency). We present a new learning framework that leverages label consistency during training, allowing consistency bias to be built into the model. Evaluation on a standard benchmark dataset for procedural text, ProPara (Dalvi et al., 2018), shows that our approach significantly improves prediction performance (F1) over prior state-of-the-art systems.

2018

pdf bib
Tracking State Changes in Procedural Text: a Challenge Dataset and Models for Process Paragraph Comprehension
Bhavana Dalvi | Lifu Huang | Niket Tandon | Wen-tau Yih | Peter Clark
Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers)

We present a new dataset and models for comprehending paragraphs about processes (e.g., photosynthesis), an important genre of text describing a dynamic world. The new dataset, ProPara, is the first to contain natural (rather than machine-generated) text about a changing world along with a full annotation of entity states (location and existence) during those changes (81k datapoints). The end-task, tracking the location and existence of entities through the text, is challenging because the causal effects of actions are often implicit and need to be inferred. We find that previous models that have worked well on synthetic data achieve only mediocre performance on ProPara, and introduce two new neural models that exploit alternative mechanisms for state prediction, in particular using LSTM input encoding and span prediction. The new models improve accuracy by up to 19%. We are releasing the ProPara dataset and our models to the community.

pdf bib
Reasoning about Actions and State Changes by Injecting Commonsense Knowledge
Niket Tandon | Bhavana Dalvi | Joel Grus | Wen-tau Yih | Antoine Bosselut | Peter Clark
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing

Comprehending procedural text, e.g., a paragraph describing photosynthesis, requires modeling actions and the state changes they produce, so that questions about entities at different timepoints can be answered. Although several recent systems have shown impressive progress in this task, their predictions can be globally inconsistent or highly improbable. In this paper, we show how the predicted effects of actions in the context of a paragraph can be improved in two ways: (1) by incorporating global, commonsense constraints (e.g., a non-existent entity cannot be destroyed), and (2) by biasing reading with preferences from large-scale corpora (e.g., trees rarely move). Unlike earlier methods, we treat the problem as a neural structured prediction task, allowing hard and soft constraints to steer the model away from unlikely predictions. We show that the new model significantly outperforms earlier systems on a benchmark dataset for procedural text comprehension (+8% relative gain), and that it also avoids some of the nonsensical predictions that earlier systems make.

2017

pdf bib
WebChild 2.0 : Fine-Grained Commonsense Knowledge Distillation
Niket Tandon | Gerard de Melo | Gerhard Weikum
Proceedings of ACL 2017, System Demonstrations

pdf bib
Domain-Targeted, High Precision Knowledge Extraction
Bhavana Dalvi Mishra | Niket Tandon | Peter Clark
Transactions of the Association for Computational Linguistics, Volume 5

Our goal is to construct a domain-targeted, high precision knowledge base (KB), containing general (subject,predicate,object) statements about the world, in support of a downstream question-answering (QA) application. Despite recent advances in information extraction (IE) techniques, no suitable resource for our task already exists; existing resources are either too noisy, too named-entity centric, or too incomplete, and typically have not been constructed with a clear scope or purpose. To address these, we have created a domain-targeted, high precision knowledge extraction pipeline, leveraging Open IE, crowdsourcing, and a novel canonical schema learning algorithm (called CASI), that produces high precision knowledge targeted to a particular domain - in our case, elementary science. To measure the KB’s coverage of the target domain’s knowledge (its “comprehensiveness” with respect to science) we measure recall with respect to an independent corpus of domain text, and show that our pipeline produces output with over 80% precision and 23% recall with respect to that target, a substantially higher coverage of tuple-expressible science knowledge than other comparable resources. We have made the KB publicly available.

2016

pdf bib
Know2Look: Commonsense Knowledge for Visual Search
Sreyasi Nag Chowdhury | Niket Tandon | Gerhard Weikum
Proceedings of the 5th Workshop on Automated Knowledge Base Construction

2015

pdf bib
Perceptually Grounded Selectional Preferences
Ekaterina Shutova | Niket Tandon | Gerard de Melo
Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

2012

pdf bib
Markov Chains for Robust Graph-Based Commonsense Information Extraction
Niket Tandon | Dheeraj Rajagopal | Gerard de Melo
Proceedings of COLING 2012: Demonstration Papers