Nathalie Aussenac-Gilles


2020

pdf bib
Classification de relations pour l’intelligence économique et concurrentielle (Relation Classification for Competitive and Economic Intelligence )
Hadjer Khaldi | Amine Abdaoui | Farah Benamara | Grégoire Sigel | Nathalie Aussenac-Gilles
Actes de la 6e conférence conjointe Journées d'Études sur la Parole (JEP, 33e édition), Traitement Automatique des Langues Naturelles (TALN, 27e édition), Rencontre des Étudiants Chercheurs en Informatique pour le Traitement Automatique des Langues (RÉCITAL, 22e édition). Volume 2 : Traitement Automatique des Langues Naturelles

L’extraction de relations reliant des entités par des liens sémantiques à partir de texte a fait l’objet de nombreux travaux visant à extraire des relations génériques comme l’hyperonymie ou spécifiques comme des relations entre gènes et protéines. Dans cet article, nous nous intéressons aux relations économiques entre deux entités nommées de type organisation à partir de textes issus du web. Ce type de relation, encore peu étudié dans la littérature, a pour but l’identification des liens entre les acteurs d’un secteur d’activité afin d’analyser leurs écosystèmes économiques. Nous présentons B IZ R EL, le premier corpus français annoté en relations économiques, ainsi qu’une approche supervisée à base de différentes architectures neuronales pour la classification de ces relations. L’évaluation de ces modèles montre des résultats très encourageants, ce qui est un premier pas vers l’intelligence économique et concurrentielle à partir de textes pour le français.

2017

pdf bib
Exploring the Impact of Pragmatic Phenomena on Irony Detection in Tweets: A Multilingual Corpus Study
Jihen Karoui | Farah Benamara | Véronique Moriceau | Viviana Patti | Cristina Bosco | Nathalie Aussenac-Gilles
Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 1, Long Papers

This paper provides a linguistic and pragmatic analysis of the phenomenon of irony in order to represent how Twitter’s users exploit irony devices within their communication strategies for generating textual contents. We aim to measure the impact of a wide-range of pragmatic phenomena in the interpretation of irony, and to investigate how these phenomena interact with contexts local to the tweet. Informed by linguistic theories, we propose for the first time a multi-layered annotation schema for irony and its application to a corpus of French, English and Italian tweets. We detail each layer, explore their interactions, and discuss our results according to a qualitative and quantitative perspective.

pdf bib
Extracting hypernym relations from Wikipedia disambiguation pages : comparing symbolic and machine learning approaches
Mouna Kamel | Cassia Trojahn | Adel Ghamnia | Nathalie Aussenac-Gilles | Cécile Fabre
IWCS 2017 - 12th International Conference on Computational Semantics - Long papers

2015

pdf bib
Détection automatique de l’ironie dans les tweets en français
Jihen Karoui | Farah Benamara Zitoune | Véronique Moriceau | Nathalie Aussenac-Gilles | Lamia Hadrich Belguith
Actes de la 22e conférence sur le Traitement Automatique des Langues Naturelles. Articles courts

Cet article présente une méthode par apprentissage supervisé pour la détection de l’ironie dans les tweets en français. Un classifieur binaire utilise des traits de l’état de l’art dont les performances sont reconnues, ainsi que de nouveaux traits issus de notre étude de corpus. En particulier, nous nous sommes intéressés à la négation et aux oppositions explicites/implicites entre des expressions d’opinion ayant des polarités différentes. Les résultats obtenus sont encourageants.

pdf bib
Trimming a consistent OWL knowledge base, relying on linguistic evidence
Julien Corman | Nathalie Aussenac-Gilles | Laure Vieu
Proceedings of the 1st Workshop on Language and Ontologies

pdf bib
Towards a Contextual Pragmatic Model to Detect Irony in Tweets
Jihen Karoui | Farah Benamara Zitoune | Véronique Moriceau | Nathalie Aussenac-Gilles | Lamia Hadrich Belguith
Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 2: Short Papers)

pdf bib
Distributional semantics for ontology verification
Julien Corman | Laure Vieu | Nathalie Aussenac-Gilles
Proceedings of the Fourth Joint Conference on Lexical and Computational Semantics

2014

pdf bib
Automatic Detection of Document Organizational Structure from Visual and Lexical Markers (Détection automatique de la structure organisationnelle de documents à partir de marqueurs visuels et lexicaux) [in French]
Jean-Philippe Fauconnier | Laurent Sorin | Mouna Kamel | Mustapha Mojahid | Nathalie Aussenac-Gilles
Proceedings of TALN 2014 (Volume 1: Long Papers)

2013

pdf bib
A Supervised learning for the identification of semantic relations in parallel enumerative structures (Apprentissage supervisé pour l’identification de relations sémantiques au sein de structures énumératives parallèles) [in French]
Jean-Philippe Fauconnier | Mouna Kamel | Bernard Rothenburger | Nathalie Aussenac-Gilles
Proceedings of TALN 2013 (Volume 1: Long Papers)

2012

pdf bib
IRIT: Textual Similarity Combining Conceptual Similarity with an N-Gram Comparison Method
Davide Buscaldi | Ronan Tournier | Nathalie Aussenac-Gilles | Josiane Mothe
*SEM 2012: The First Joint Conference on Lexical and Computational Semantics – Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012)

2010

pdf bib
Ontolexical resources for feature-based opinion mining: a case-study
Anaïs Cadilhac | Farah Benamara | Nathalie Aussenac-Gilles
Proceedings of the 6th Workshop on Ontologies and Lexical Resources