Murthy Devarakonda


pdf bib
Using Contextual Representations for Suicide Risk Assessment from Internet Forums
Ashwin Karthik Ambalavanan | Pranjali Dileep Jagtap | Soumya Adhya | Murthy Devarakonda
Proceedings of the Sixth Workshop on Computational Linguistics and Clinical Psychology

Social media posts may yield clues to the subject’s (usually, the writer’s) suicide risk and intent, which can be used for timely intervention. This research, motivated by the CLPsych 2019 shared task, developed neural network-based methods for analyzing posts in one or more Reddit forums to assess the subject’s suicide risk. One of the technical challenges this task poses is the large amount of text from multiple posts of a single user. Our neural network models use the advanced multi-headed Attention-based autoencoder architecture, called Bidirectional Encoder Representations from Transformers (BERT). Our system achieved the 2nd best performance of 0.477 macro averaged F measure on Task A of the challenge. Among the three different alternatives we developed for the challenge, the single BERT model that processed all of a user’s posts performed the best on all three Tasks.


pdf bib
Scoring Disease-Medication Associations using Advanced NLP, Machine Learning, and Multiple Content Sources
Bharath Dandala | Murthy Devarakonda | Mihaela Bornea | Christopher Nielson
Proceedings of the Fifth Workshop on Building and Evaluating Resources for Biomedical Text Mining (BioTxtM2016)

Effective knowledge resources are critical for developing successful clinical decision support systems that alleviate the cognitive load on physicians in patient care. In this paper, we describe two new methods for building a knowledge resource of disease to medication associations. These methods use fundamentally different content and are based on advanced natural language processing and machine learning techniques. One method uses distributional semantics on large medical text, and the other uses data mining on a large number of patient records. The methods are evaluated using 25,379 unique disease-medication pairs extracted from 100 de-identified longitudinal patient records of a large multi-provider hospital system. We measured recall (R), precision (P), and F scores for positive and negative association prediction, along with coverage and accuracy. While individual methods performed well, a combined stacked classifier achieved the best performance, indicating the limitations and unique value of each resource and method. In predicting positive associations, the stacked combination significantly outperformed the baseline (a distant semi-supervised method on large medical text), achieving F scores of 0.75 versus 0.55 on the pairs seen in the patient records, and F scores of 0.69 and 0.35 on unique pairs.