Mu Yang


pdf bib
Headword-Oriented Entity Linking: A Special Entity Linking Task with Dataset and Baseline
Mu Yang | Chi-Yen Chen | Yi-Hui Lee | Qian-hui Zeng | Wei-Yun Ma | Chen-Yang Shih | Wei-Jhih Chen
Proceedings of the 12th Language Resources and Evaluation Conference

In this paper, we design headword-oriented entity linking (HEL), a specialized entity linking problem in which only the headwords of the entities are to be linked to knowledge bases; mention scopes of the entities do not need to be identified in the problem setting. This special task is motivated by the fact that in many articles referring to specific products, the complete full product names are rarely written; instead, they are often abbreviated to shorter, irregular versions or even just to their headwords, which are usually their product types, such as “stick” or “mask” in a cosmetic context. To fully design the special task, we construct a labeled cosmetic corpus as a public benchmark for this problem, and propose a product embedding model to address the task, where each product corresponds to a dense representation to encode the different information on products and their context jointly. Besides, to increase training data, we propose a special transfer learning framework in which distant supervision with heuristic patterns is first utilized, followed by supervised learning using a small amount of manually labeled data. The experimental results show that our model provides a strong benchmark performance on the special task.

pdf bib
Biomedical Event Extraction with Hierarchical Knowledge Graphs
Kung-Hsiang Huang | Mu Yang | Nanyun Peng
Findings of the Association for Computational Linguistics: EMNLP 2020

Biomedical event extraction is critical in understanding biomolecular interactions described in scientific corpus. One of the main challenges is to identify nested structured events that are associated with non-indicative trigger words. We propose to incorporate domain knowledge from Unified Medical Language System (UMLS) to a pre-trained language model via Graph Edge-conditioned Attention Networks (GEANet) and hierarchical graph representation. To better recognize the trigger words, each sentence is first grounded to a sentence graph based on a jointly modeled hierarchical knowledge graph from UMLS. The grounded graphs are then propagated by GEANet, a novel graph neural networks for enhanced capabilities in inferring complex events. On BioNLP 2011 GENIA Event Extraction task, our approach achieved 1.41% F1 and 3.19% F1 improvements on all events and complex events, respectively. Ablation studies confirm the importance of GEANet and hierarchical KG.


pdf bib
Deep Structured Neural Network for Event Temporal Relation Extraction
Rujun Han | I-Hung Hsu | Mu Yang | Aram Galstyan | Ralph Weischedel | Nanyun Peng
Proceedings of the 23rd Conference on Computational Natural Language Learning (CoNLL)

We propose a novel deep structured learning framework for event temporal relation extraction. The model consists of 1) a recurrent neural network (RNN) to learn scoring functions for pair-wise relations, and 2) a structured support vector machine (SSVM) to make joint predictions. The neural network automatically learns representations that account for long-term contexts to provide robust features for the structured model, while the SSVM incorporates domain knowledge such as transitive closure of temporal relations as constraints to make better globally consistent decisions. By jointly training the two components, our model combines the benefits of both data-driven learning and knowledge exploitation. Experimental results on three high-quality event temporal relation datasets (TCR, MATRES, and TB-Dense) demonstrate that incorporated with pre-trained contextualized embeddings, the proposed model achieves significantly better performances than the state-of-the-art methods on all three datasets. We also provide thorough ablation studies to investigate our model.