Morteza Rohanian


2020

pdf bib
Re-framing Incremental Deep Language Models for Dialogue Processing with Multi-task Learning
Morteza Rohanian | Julian Hough
Proceedings of the 28th International Conference on Computational Linguistics

We present a multi-task learning framework to enable the training of one universal incremental dialogue processing model with four tasks of disfluency detection, language modelling, part-of-speech tagging and utterance segmentation in a simple deep recurrent setting. We show that these tasks provide positive inductive biases to each other with optimal contribution of each one relying on the severity of the noise from the task. Our live multi-task model outperforms similar individual tasks, delivers competitive performance and is beneficial for future use in conversational agents in psychiatric treatment.

2017

pdf bib
Multi-Document Summarization of Persian Text using Paragraph Vectors
Morteza Rohanian
Proceedings of the Student Research Workshop Associated with RANLP 2017

A multi-document summarizer finds the key topics from multiple textual sources and organizes information around them. In this paper we propose a summarization method for Persian text using paragraph vectors that can represent textual units of arbitrary lengths. We use these vectors to calculate the semantic relatedness between documents, cluster them to a number of predetermined groups, weight them based on their distance to the centroids and the intra-cluster homogeneity and take out the key paragraphs. We compare the final summaries with the gold-standard summaries of 21 digital topics using the ROUGE evaluation metric. Experimental results show the advantages of using paragraph vectors over earlier attempts at developing similar methods for a low resource language like Persian.
Search
Co-authors
Venues