Minmin Shen


2020

pdf bib
Schema-Guided Natural Language Generation
Yuheng Du | Shereen Oraby | Vittorio Perera | Minmin Shen | Anjali Narayan-Chen | Tagyoung Chung | Anushree Venkatesh | Dilek Hakkani-Tur
Proceedings of the 13th International Conference on Natural Language Generation

Neural network based approaches to data-to-text natural language generation (NLG) have gained popularity in recent years, with the goal of generating a natural language prompt that accurately realizes an input meaning representation. To facilitate the training of neural network models, researchers created large datasets of paired utterances and their meaning representations. However, the creation of such datasets is an arduous task and they mostly consist of simple meaning representations composed of slot and value tokens to be realized. These representations do not include any contextual information that an NLG system can use when trying to generalize, such as domain information and descriptions of slots and values. In this paper, we present the novel task of Schema-Guided Natural Language Generation (SG-NLG). Here, the goal is still to generate a natural language prompt, but in SG-NLG, the input MRs are paired with rich schemata providing contextual information. To generate a dataset for SG-NLG we re-purpose an existing dataset for another task: dialog state tracking, which includes a large and rich schema spanning multiple different attributes, including information about the domain, user intent, and slot descriptions. We train different state-of-the-art models for neural natural language generation on this dataset and show that in many cases, including rich schema information allows our models to produce higher quality outputs both in terms of semantics and diversity. We also conduct experiments comparing model performance on seen versus unseen domains, and present a human evaluation demonstrating high ratings for overall output quality.

2019

pdf bib
Controlled Text Generation for Data Augmentation in Intelligent Artificial Agents
Nikolaos Malandrakis | Minmin Shen | Anuj Goyal | Shuyang Gao | Abhishek Sethi | Angeliki Metallinou
Proceedings of the 3rd Workshop on Neural Generation and Translation

Data availability is a bottleneck during early stages of development of new capabilities for intelligent artificial agents. We investigate the use of text generation techniques to augment the training data of a popular commercial artificial agent across categories of functionality, with the goal of faster development of new functionality. We explore a variety of encoder-decoder generative models for synthetic training data generation and propose using conditional variational auto-encoders. Our approach requires only direct optimization, works well with limited data and significantly outperforms the previous controlled text generation techniques. Further, the generated data are used as additional training samples in an extrinsic intent classification task, leading to improved performance by up to 5% absolute f-score in low-resource cases, validating the usefulness of our approach.