Minh Nguyen


2019

bib
Isolating the Effects of Modeling Recursive Structures: A Case Study in Pronunciation Prediction of Chinese Characters
Minh Nguyen | Gia H Ngo | Nancy Chen
Proceedings of the 2019 Workshop on Widening NLP

Finding that explicitly modeling structures leads to better generalization, we consider the task of predicting Cantonese pronunciations of logographs (Chinese characters) using logographs’ recursive structures. This task is a suitable case study for two reasons. First, logographs’ pronunciations depend on structures (i.e. the hierarchies of sub-units in logographs) Second, the quality of logographic structures is consistent since the structures are constructed automatically using a set of rules. Thus, this task is less affected by confounds such as varying quality between annotators. Empirical results show that modeling structures explicitly using treeLSTM outperforms LSTM baseline, reducing prediction error by 6.0% relative.

2018

pdf bib
Multimodal neural pronunciation modeling for spoken languages with logographic origin
Minh Nguyen | Gia H. Ngo | Nancy Chen
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing

Graphemes of most languages encode pronunciation, though some are more explicit than others. Languages like Spanish have a straightforward mapping between its graphemes and phonemes, while this mapping is more convoluted for languages like English. Spoken languages such as Cantonese present even more challenges in pronunciation modeling: (1) they do not have a standard written form, (2) the closest graphemic origins are logographic Han characters, of which only a subset of these logographic characters implicitly encodes pronunciation. In this work, we propose a multimodal approach to predict the pronunciation of Cantonese logographic characters, using neural networks with a geometric representation of logographs and pronunciation of cognates in historically related languages. The proposed framework improves performance by 18.1% and 25.0% respective to unimodal and multimodal baselines.

pdf bib
Who is Killed by Police: Introducing Supervised Attention for Hierarchical LSTMs
Minh Nguyen | Thien Huu Nguyen
Proceedings of the 27th International Conference on Computational Linguistics

Finding names of people killed by police has become increasingly important as police shootings get more and more public attention (police killing detection). Unfortunately, there has been not much work in the literature addressing this problem. The early work in this field (Keith etal., 2017) proposed a distant supervision framework based on Expectation Maximization (EM) to deal with the multiple appearances of the names in documents. However, such EM-based framework cannot take full advantages of deep learning models, necessitating the use of handdesigned features to improve the detection performance. In this work, we present a novel deep learning method to solve the problem of police killing recognition. The proposed method relies on hierarchical LSTMs to model the multiple sentences that contain the person names of interests, and introduce supervised attention mechanisms based on semantical word lists and dependency trees to upweight the important contextual words. Our experiments demonstrate the benefits of the proposed model and yield the state-of-the-art performance for police killing detection.

pdf bib
Statistical Machine Transliteration Baselines for NEWS 2018
Snigdha Singhania | Minh Nguyen | Gia H. Ngo | Nancy Chen
Proceedings of the Seventh Named Entities Workshop

This paper reports the results of our trans-literation experiments conducted on NEWS 2018 Shared Task dataset. We focus on creating the baseline systems trained using two open-source, statistical transliteration tools, namely Sequitur and Moses. We discuss the pre-processing steps performed on this dataset for both the systems. We also provide a re-ranking system which uses top hypotheses from Sequitur and Moses to create a consolidated list of transliterations. The results obtained from each of these models can be used to present a good starting point for the participating teams.

2016

pdf bib
SDP-JAIST: A Shallow Discourse Parsing system @ CoNLL 2016 Shared Task
Minh Nguyen
Proceedings of the CoNLL-16 shared task