Mingtong Liu


2020

pdf bib
基于图神经网络的汉语依存分析和语义组合计算联合模型(Joint Learning Chinese Dependency Parsing and Semantic Composition based on Graph Neural Network)
Kai Wang (汪凯) | Mingtong Liu (刘明童) | Yuanmeng Chen (陈圆梦) | Yujie Zhang (张玉洁) | Jinan Xu (徐金安) | Yufeng Chen (陈钰枫)
Proceedings of the 19th Chinese National Conference on Computational Linguistics

组合原则表明句子的语义由其构成成分的语义按照一定规则组合而成, 由此基于句法结构的语义组合计算一直是一个重要的探索方向,其中采用树结构的组合计算方法最具有代表性。但是该方法难以应用于大规模数据处理,主要问题是其语义组合的顺序依赖于具体树的结构,无法实现并行处理。本文提出一种基于图的依存句法分析和语义组合计算的联合框架,并借助复述识别任务训练语义组合模型和句法分析模型。一方面图模型可以在训练和预测阶段采用并行处理,极大缩短计算时间;另一方面联合句法分析的语义组合框架不必依赖外部句法分析器,同时两个任务的联合学习可使语义表示同时学习句法结构和语义的上下文信息。我们在公开汉语复述识别数据集LCQMC上进行评测,实验结果显示准确率接近树结构组合方法,达到79.54%,而预测速度提升高达30倍。

pdf bib
A Joint Model for Graph-based Chinese Dependency Parsing
Xingchen Li | Mingtong Liu | Yujie Zhang | Jinan Xu | Yufeng Chen
Proceedings of the 19th Chinese National Conference on Computational Linguistics

In Chinese dependency parsing, the joint model of word segmentation, POS tagging and dependency parsing has become the mainstream framework because it can eliminate error propagation and share knowledge, where the transition-based model with feature templates maintains the best performance. Recently, the graph-based joint model (Yan et al., 2019) on word segmentation and dependency parsing has achieved better performance, demonstrating the advantages of the graph-based models. However, this work can not provide POS information for downstream tasks, and the POS tagging task was proved to be helpful to the dependency parsing according to the research of the transition-based model. Therefore, we propose a graph-based joint model for Chinese word segmentation, POS tagging and dependency parsing. We designed a charater-level POS tagging task, and then train it jointly with the model of Yan et al. (2019). We adopt two methods of joint POS tagging task, one is by sharing parameters, the other is by using tag attention mechanism, which enables the three tasks to better share intermediate information and improve each other’s performance. The experimental results on the Penn Chinese treebank (CTB5) show that our proposed joint model improved by 0.38% on dependency parsing than the model of Yan et al. (2019). Compared with the best transition-based joint model, our model improved by 0.18%, 0.35% and 5.99% respectively in terms of word segmentation, POS tagging and dependency parsing.

pdf bib
A Learning-Exploring Method to Generate Diverse Paraphrases with Multi-Objective Deep Reinforcement Learning
Mingtong Liu | Erguang Yang | Deyi Xiong | Yujie Zhang | Yao Meng | Changjian Hu | Jinan Xu | Yufeng Chen
Proceedings of the 28th International Conference on Computational Linguistics

Paraphrase generation (PG) is of great importance to many downstream tasks in natural language processing. Diversity is an essential nature to PG for enhancing generalization capability and robustness of downstream applications. Recently, neural sequence-to-sequence (Seq2Seq) models have shown promising results in PG. However, traditional model training for PG focuses on optimizing model prediction against single reference and employs cross-entropy loss, which objective is unable to encourage model to generate diverse paraphrases. In this work, we present a novel approach with multi-objective learning to PG. We propose a learning-exploring method to generate sentences as learning objectives from the learned data distribution, and employ reinforcement learning to combine these new learning objectives for model training. We first design a sample-based algorithm to explore diverse sentences. Then we introduce several reward functions to evaluate the sampled sentences as learning signals in terms of expressive diversity and semantic fidelity, aiming to generate diverse and high-quality paraphrases. To effectively optimize model performance satisfying different evaluating aspects, we use a GradNorm-based algorithm that automatically balances these training objectives. Experiments and analyses on Quora and Twitter datasets demonstrate that our proposed method not only gains a significant increase in diversity but also improves generation quality over several state-of-the-art baselines.

2019

pdf bib
Original Semantics-Oriented Attention and Deep Fusion Network for Sentence Matching
Mingtong Liu | Yujie Zhang | Jinan Xu | Yufeng Chen
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

Sentence matching is a key issue in natural language inference and paraphrase identification. Despite the recent progress on multi-layered neural network with cross sentence attention, one sentence learns attention to the intermediate representations of another sentence, which are propagated from preceding layers and therefore are uncertain and unstable for matching, particularly at the risk of error propagation. In this paper, we present an original semantics-oriented attention and deep fusion network (OSOA-DFN) for sentence matching. Unlike existing models, each attention layer of OSOA-DFN is oriented to the original semantic representation of another sentence, which captures the relevant information from a fixed matching target. The multiple attention layers allow one sentence to repeatedly read the important information of another sentence for better matching. We then additionally design deep fusion to propagate the attention information at each matching layer. At last, we introduce a self-attention mechanism to capture global context to enhance attention-aware representation within each sentence. Experiment results on three sentence matching benchmark datasets SNLI, SciTail and Quora show that OSOA-DFN has the ability to model sentence matching more precisely.