Min Zhang


2020

pdf bib
Bilingual Dictionary Based Neural Machine Translation without Using Parallel Sentences
Xiangyu Duan | Baijun Ji | Hao Jia | Min Tan | Min Zhang | Boxing Chen | Weihua Luo | Yue Zhang
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

In this paper, we propose a new task of machine translation (MT), which is based on no parallel sentences but can refer to a ground-truth bilingual dictionary. Motivated by the ability of a monolingual speaker learning to translate via looking up the bilingual dictionary, we propose the task to see how much potential an MT system can attain using the bilingual dictionary and large scale monolingual corpora, while is independent on parallel sentences. We propose anchored training (AT) to tackle the task. AT uses the bilingual dictionary to establish anchoring points for closing the gap between source language and target language. Experiments on various language pairs show that our approaches are significantly better than various baselines, including dictionary-based word-by-word translation, dictionary-supervised cross-lingual word embedding transformation, and unsupervised MT. On distant language pairs that are hard for unsupervised MT to perform well, AT performs remarkably better, achieving performances comparable to supervised SMT trained on more than 4M parallel sentences.

pdf bib
Syntax-Aware Opinion Role Labeling with Dependency Graph Convolutional Networks
Bo Zhang | Yue Zhang | Rui Wang | Zhenghua Li | Min Zhang
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

Opinion role labeling (ORL) is a fine-grained opinion analysis task and aims to answer “who expressed what kind of sentiment towards what?”. Due to the scarcity of labeled data, ORL remains challenging for data-driven methods. In this work, we try to enhance neural ORL models with syntactic knowledge by comparing and integrating different representations. We also propose dependency graph convolutional networks (DEPGCN) to encode parser information at different processing levels. In order to compensate for parser inaccuracy and reduce error propagation, we introduce multi-task learning (MTL) to train the parser and the ORL model simultaneously. We verify our methods on the benchmark MPQA corpus. The experimental results show that syntactic information is highly valuable for ORL, and our final MTL model effectively boosts the F1 score by 9.29 over the syntax-agnostic baseline. In addition, we find that the contributions from syntactic knowledge do not fully overlap with contextualized word representations (BERT). Our best model achieves 4.34 higher F1 score than the current state-ofthe-art.

pdf bib
Efficient Second-Order TreeCRF for Neural Dependency Parsing
Yu Zhang | Zhenghua Li | Min Zhang
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

In the deep learning (DL) era, parsing models are extremely simplified with little hurt on performance, thanks to the remarkable capability of multi-layer BiLSTMs in context representation. As the most popular graph-based dependency parser due to its high efficiency and performance, the biaffine parser directly scores single dependencies under the arc-factorization assumption, and adopts a very simple local token-wise cross-entropy training loss. This paper for the first time presents a second-order TreeCRF extension to the biaffine parser. For a long time, the complexity and inefficiency of the inside-outside algorithm hinder the popularity of TreeCRF. To address this issue, we propose an effective way to batchify the inside and Viterbi algorithms for direct large matrix operation on GPUs, and to avoid the complex outside algorithm via efficient back-propagation. Experiments and analysis on 27 datasets from 13 languages clearly show that techniques developed before the DL era, such as structural learning (global TreeCRF loss) and high-order modeling are still useful, and can further boost parsing performance over the state-of-the-art biaffine parser, especially for partially annotated training data. We release our code at https://github.com/yzhangcs/crfpar.

pdf bib
Aspect Sentiment Classification with Document-level Sentiment Preference Modeling
Xiao Chen | Changlong Sun | Jingjing Wang | Shoushan Li | Luo Si | Min Zhang | Guodong Zhou
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

In the literature, existing studies always consider Aspect Sentiment Classification (ASC) as an independent sentence-level classification problem aspect by aspect, which largely ignore the document-level sentiment preference information, though obviously such information is crucial for alleviating the information deficiency problem in ASC. In this paper, we explore two kinds of sentiment preference information inside a document, i.e., contextual sentiment consistency w.r.t. the same aspect (namely intra-aspect sentiment consistency) and contextual sentiment tendency w.r.t. all the related aspects (namely inter-aspect sentiment tendency). On the basis, we propose a Cooperative Graph Attention Networks (CoGAN) approach for cooperatively learning the aspect-related sentence representation. Specifically, two graph attention networks are leveraged to model above two kinds of document-level sentiment preference information respectively, followed by an interactive mechanism to integrate the two-fold preference. Detailed evaluation demonstrates the great advantage of the proposed approach to ASC over the state-of-the-art baselines. This justifies the importance of the document-level sentiment preference information to ASC and the effectiveness of our approach capturing such information.

pdf bib
Multi-Turn Dialogue Generation in E-Commerce Platform with the Context of Historical Dialogue
WeiSheng Zhang | Kaisong Song | Yangyang Kang | Zhongqing Wang | Changlong Sun | Xiaozhong Liu | Shoushan Li | Min Zhang | Luo Si
Findings of the Association for Computational Linguistics: EMNLP 2020

As an important research topic, customer service dialogue generation tends to generate generic seller responses by leveraging current dialogue information. In this study, we propose a novel and extensible dialogue generation method by leveraging sellers’ historical dialogue information, which can be both accessible and informative. By utilizing innovative historical dialogue representation learning and historical dialogue selection mechanism, the proposed model is capable of detecting most related responses from sellers’ historical dialogues, which can further enhance the current dialogue generation quality. Unlike prior dialogue generation efforts, we treat each seller’s historical dialogues as a list of Customer-Seller utterance pairs and allow the model to measure their different importance, and copy words directly from most relevant pairs. Extensive experimental results show that the proposed approach can generate high-quality responses that cater to specific sellers’ characteristics and exhibit consistent superiority over baselines on a real-world multi-turn customer service dialogue dataset.

pdf bib
Improving Relation Extraction with Relational Paraphrase Sentences
Junjie Yu | Tong Zhu | Wenliang Chen | Wei Zhang | Min Zhang
Proceedings of the 28th International Conference on Computational Linguistics

Supervised models for Relation Extraction (RE) typically require human-annotated training data. Due to the limited size, the human-annotated data is usually incapable of covering diverse relation expressions, which could limit the performance of RE. To increase the coverage of relation expressions, we may enlarge the labeled data by hiring annotators or applying Distant Supervision (DS). However, the human-annotated data is costly and non-scalable while the distantly supervised data contains many noises. In this paper, we propose an alternative approach to improve RE systems via enriching diverse expressions by relational paraphrase sentences. Based on an existing labeled data, we first automatically build a task-specific paraphrase data. Then, we propose a novel model to learn the information of diverse relation expressions. In our model, we try to capture this information on the paraphrases via a joint learning framework. Finally, we conduct experiments on a widely used dataset and the experimental results show that our approach is effective to improve the performance on relation extraction, even compared with a strong baseline.

pdf bib
Multi-grained Chinese Word Segmentation with Weakly Labeled Data
Chen Gong | Zhenghua Li | Bowei Zou | Min Zhang
Proceedings of the 28th International Conference on Computational Linguistics

In contrast with the traditional single-grained word segmentation (SWS), where a sentence corresponds to a single word sequence, multi-grained Chinese word segmentation (MWS) aims to segment a sentence into multiple word sequences to preserve all words of different granularities. Due to the lack of manually annotated MWS data, previous work train and tune MWS models only on automatically generated pseudo MWS data. In this work, we further take advantage of the rich word boundary information in existing SWS data and naturally annotated data from dictionary example (DictEx) sentences, to advance the state-of-the-art MWS model based on the idea of weak supervision. Particularly, we propose to accommodate two types of weakly labeled data for MWS, i.e., SWS data and DictEx data by employing a simple yet competitive graph-based parser with local loss. Besides, we manually annotate a high-quality MWS dataset according to our newly compiled annotation guideline, consisting of over 9,000 sentences from two types of texts, i.e., canonical newswire (NEWS) and non-canonical web (BAIKE) data for better evaluation. Detailed evaluation shows that our proposed model with weakly labeled data significantly outperforms the state-of-the-art MWS model by 1.12 and 5.97 on NEWS and BAIKE data in F1.

pdf bib
Semantic Role Labeling with Heterogeneous Syntactic Knowledge
Qingrong Xia | Rui Wang | Zhenghua Li | Yue Zhang | Min Zhang
Proceedings of the 28th International Conference on Computational Linguistics

Recently, due to the interplay between syntax and semantics, incorporating syntactic knowledge into neural semantic role labeling (SRL) has achieved much attention. Most of the previous syntax-aware SRL works focus on explicitly modeling homogeneous syntactic knowledge over tree outputs. In this work, we propose to encode heterogeneous syntactic knowledge for SRL from both explicit and implicit representations. First, we introduce graph convolutional networks to explicitly encode multiple heterogeneous dependency parse trees. Second, we extract the implicit syntactic representations from syntactic parser trained with heterogeneous treebanks. Finally, we inject the two types of heterogeneous syntax-aware representations into the base SRL model as extra inputs. We conduct experiments on two widely-used benchmark datasets, i.e., Chinese Proposition Bank 1.0 and English CoNLL-2005 dataset. Experimental results show that incorporating heterogeneous syntactic knowledge brings significant improvements over strong baselines. We further conduct detailed analysis to gain insights on the usefulness of heterogeneous (vs. homogeneous) syntactic knowledge and the effectiveness of our proposed approaches for modeling such knowledge.

pdf bib
Interactively-Propagative Attention Learning for Implicit Discourse Relation Recognition
Huibin Ruan | Yu Hong | Yang Xu | Zhen Huang | Guodong Zhou | Min Zhang
Proceedings of the 28th International Conference on Computational Linguistics

We tackle implicit discourse relation recognition. Both self-attention and interactive-attention mechanisms have been applied for attention-aware representation learning, which improves the current discourse analysis models. To take advantages of the two attention mechanisms simultaneously, we develop a propagative attention learning model using a cross-coupled two-channel network. We experiment on Penn Discourse Treebank. The test results demonstrate that our model yields substantial improvements over the baselines (BiLSTM and BERT).

pdf bib
Semi-supervised Domain Adaptation for Dependency Parsing via Improved Contextualized Word Representations
Ying Li | Zhenghua Li | Min Zhang
Proceedings of the 28th International Conference on Computational Linguistics

In recent years, parsing performance is dramatically improved on in-domain texts thanks to the rapid progress of deep neural network models. The major challenge for current parsing research is to improve parsing performance on out-of-domain texts that are very different from the in-domain training data when there is only a small-scale out-domain labeled data. To deal with this problem, we propose to improve the contextualized word representations via adversarial learning and fine-tuning BERT processes. Concretely, we apply adversarial learning to three representative semi-supervised domain adaption methods, i.e., direct concatenation (CON), feature augmentation (FA), and domain embedding (DE) with two useful strategies, i.e., fused target-domain word representations and orthogonality constraints, thus enabling to model more pure yet effective domain-specific and domain-invariant representations. Simultaneously, we utilize a large-scale target-domain unlabeled data to fine-tune BERT with only the language model loss, thus obtaining reliable contextualized word representations that benefit for the cross-domain dependency parsing. Experiments on a benchmark dataset show that our proposed adversarial approaches achieve consistent improvement, and fine-tuning BERT further boosts parsing accuracy by a large margin. Our single model achieves the same state-of-the-art performance as the top submitted system in the NLPCC-2019 shared task, which uses ensemble models and BERT.

pdf bib
Token Drop mechanism for Neural Machine Translation
Huaao Zhang | Shigui Qiu | Xiangyu Duan | Min Zhang
Proceedings of the 28th International Conference on Computational Linguistics

Neural machine translation with millions of parameters is vulnerable to unfamiliar inputs. We propose Token Drop to improve generalization and avoid overfitting for the NMT model. Similar to word dropout, whereas we replace dropped token with a special token instead of setting zero to words. We further introduce two self-supervised objectives: Replaced Token Detection and Dropped Token Prediction. Our method aims to force model generating target translation with less information, in this way the model can learn textual representation better. Experiments on Chinese-English and English-Romanian benchmark demonstrate the effectiveness of our approach and our model achieves significant improvements over a strong Transformer baseline.

pdf bib
Towards Accurate and Consistent Evaluation: A Dataset for Distantly-Supervised Relation Extraction
Tong Zhu | Haitao Wang | Junjie Yu | Xiabing Zhou | Wenliang Chen | Wei Zhang | Min Zhang
Proceedings of the 28th International Conference on Computational Linguistics

In recent years, distantly-supervised relation extraction has achieved a certain success by using deep neural networks. Distant Supervision (DS) can automatically generate large-scale annotated data by aligning entity pairs from Knowledge Bases (KB) to sentences. However, these DS-generated datasets inevitably have wrong labels that result in incorrect evaluation scores during testing, which may mislead the researchers. To solve this problem, we build a new dataset NYTH, where we use the DS-generated data as training data and hire annotators to label test data. Compared with the previous datasets, NYT-H has a much larger test set and then we can perform more accurate and consistent evaluation. Finally, we present the experimental results of several widely used systems on NYT-H. The experimental results show that the ranking lists of the comparison systems on the DS-labelled test data and human-annotated test data are different. This indicates that our human-annotated data is necessary for evaluation of distantly-supervised relation extraction.

pdf bib
Improving AMR Parsing with Sequence-to-Sequence Pre-training
Dongqin Xu | Junhui Li | Muhua Zhu | Min Zhang | Guodong Zhou
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

In the literature, the research on abstract meaning representation (AMR) parsing is much restricted by the size of human-curated dataset which is critical to build an AMR parser with good performance. To alleviate such data size restriction, pre-trained models have been drawing more and more attention in AMR parsing. However, previous pre-trained models, like BERT, are implemented for general purpose which may not work as expected for the specific task of AMR parsing. In this paper, we focus on sequence-to-sequence (seq2seq) AMR parsing and propose a seq2seq pre-training approach to build pre-trained models in both single and joint way on three relevant tasks, i.e., machine translation, syntactic parsing, and AMR parsing itself. Moreover, we extend the vanilla fine-tuning method to a multi-task learning fine-tuning method that optimizes for the performance of AMR parsing while endeavors to preserve the response of pre-trained models. Extensive experimental results on two English benchmark datasets show that both the single and joint pre-trained models significantly improve the performance (e.g., from 71.5 to 80.2 on AMR 2.0), which reaches the state of the art. The result is very encouraging since we achieve this with seq2seq models rather than complex models. We make our code and model available at https:// github.com/xdqkid/S2S-AMR-Parser.

pdf bib
DuSQL: A Large-Scale and Pragmatic Chinese Text-to-SQL Dataset
Lijie Wang | Ao Zhang | Kun Wu | Ke Sun | Zhenghua Li | Hua Wu | Min Zhang | Haifeng Wang
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

Due to the lack of labeled data, previous research on text-to-SQL parsing mainly focuses on English. Representative English datasets include ATIS, WikiSQL, Spider, etc. This paper presents DuSQL, a larges-scale and pragmatic Chinese dataset for the cross-domain text-to-SQL task, containing 200 databases, 813 tables, and 23,797 question/SQL pairs. Our new dataset has three major characteristics. First, by manually analyzing questions from several representative applications, we try to figure out the true distribution of SQL queries in real-life needs. Second, DuSQL contains a considerable proportion of SQL queries involving row or column calculations, motivated by our analysis on the SQL query distributions. Finally, we adopt an effective data construction framework via human-computer collaboration. The basic idea is automatically generating SQL queries based on the SQL grammar and constrained by the given database. This paper describes in detail the construction process and data statistics of DuSQL. Moreover, we present and compare performance of several open-source text-to-SQL parsers with minor modification to accommodate Chinese, including a simple yet effective extension to IRNet for handling calculation SQL queries.

2019

pdf bib
Contrastive Attention Mechanism for Abstractive Sentence Summarization
Xiangyu Duan | Hongfei Yu | Mingming Yin | Min Zhang | Weihua Luo | Yue Zhang
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

We propose a contrastive attention mechanism to extend the sequence-to-sequence framework for abstractive sentence summarization task, which aims to generate a brief summary of a given source sentence. The proposed contrastive attention mechanism accommodates two categories of attention: one is the conventional attention that attends to relevant parts of the source sentence, the other is the opponent attention that attends to irrelevant or less relevant parts of the source sentence. Both attentions are trained in an opposite way so that the contribution from the conventional attention is encouraged and the contribution from the opponent attention is discouraged through a novel softmax and softmin functionality. Experiments on benchmark datasets show that, the proposed contrastive attention mechanism is more focused on the relevant parts for the summary than the conventional attention mechanism, and greatly advances the state-of-the-art performance on the abstractive sentence summarization task. We release the code at https://github.com/travel-go/ Abstractive-Text-Summarization.

pdf bib
A Syntax-aware Multi-task Learning Framework for Chinese Semantic Role Labeling
Qingrong Xia | Zhenghua Li | Min Zhang
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

Semantic role labeling (SRL) aims to identify the predicate-argument structure of a sentence. Inspired by the strong correlation between syntax and semantics, previous works pay much attention to improve SRL performance on exploiting syntactic knowledge, achieving significant results. Pipeline methods based on automatic syntactic trees and multi-task learning (MTL) approaches using standard syntactic trees are two common research orientations. In this paper, we adopt a simple unified span-based model for both span-based and word-based Chinese SRL as a strong baseline. Besides, we present a MTL framework that includes the basic SRL module and a dependency parser module. Different from the commonly used hard parameter sharing strategy in MTL, the main idea is to extract implicit syntactic representations from the dependency parser as external inputs for the basic SRL model. Experiments on the benchmarks of Chinese Proposition Bank 1.0 and CoNLL-2009 Chinese datasets show that our proposed framework can effectively improve the performance over the strong baselines. With the external BERT representations, our framework achieves new state-of-the-art 87.54 and 88.5 F1 scores on the two test data of the two benchmarks, respectively. In-depth analysis are conducted to gain more insights on the proposed framework and the effectiveness of syntax.

pdf bib
Modeling Graph Structure in Transformer for Better AMR-to-Text Generation
Jie Zhu | Junhui Li | Muhua Zhu | Longhua Qian | Min Zhang | Guodong Zhou
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

Recent studies on AMR-to-text generation often formalize the task as a sequence-to-sequence (seq2seq) learning problem by converting an Abstract Meaning Representation (AMR) graph into a word sequences. Graph structures are further modeled into the seq2seq framework in order to utilize the structural information in the AMR graphs. However, previous approaches only consider the relations between directly connected concepts while ignoring the rich structure in AMR graphs. In this paper we eliminate such a strong limitation and propose a novel structure-aware self-attention approach to better model the relations between indirectly connected concepts in the state-of-the-art seq2seq model, i.e. the Transformer. In particular, a few different methods are explored to learn structural representations between two concepts. Experimental results on English AMR benchmark datasets show that our approach significantly outperforms the state-of-the-art with 29.66 and 31.82 BLEU scores on LDC2015E86 and LDC2017T10, respectively. To the best of our knowledge, these are the best results achieved so far by supervised models on the benchmarks.

pdf bib
Emotion Detection with Neural Personal Discrimination
Xiabing Zhou | Zhongqing Wang | Shoushan Li | Guodong Zhou | Min Zhang
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

There have been a recent line of works to automatically predict the emotions of posts in social media. Existing approaches consider the posts individually and predict their emotions independently. Different from previous researches, we explore the dependence among relevant posts via the authors’ backgrounds, since the authors with similar backgrounds, e.g., gender, location, tend to express similar emotions. However, such personal attributes are not easy to obtain in most social media websites, and it is hard to capture attributes-aware words to connect similar people. Accordingly, we propose a Neural Personal Discrimination (NPD) approach to address above challenges by determining personal attributes from posts, and connecting relevant posts with similar attributes to jointly learn their emotions. In particular, we employ adversarial discriminators to determine the personal attributes, with attention mechanisms to aggregate attributes-aware words. In this way, social correlationship among different posts can be better addressed. Experimental results show the usefulness of personal attributes, and the effectiveness of our proposed NPD approach in capturing such personal attributes with significant gains over the state-of-the-art models.

pdf bib
Human-Like Decision Making: Document-level Aspect Sentiment Classification via Hierarchical Reinforcement Learning
Jingjing Wang | Changlong Sun | Shoushan Li | Jiancheng Wang | Luo Si | Min Zhang | Xiaozhong Liu | Guodong Zhou
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

Recently, neural networks have shown promising results on Document-level Aspect Sentiment Classification (DASC). However, these approaches often offer little transparency w.r.t. their inner working mechanisms and lack interpretability. In this paper, to simulating the steps of analyzing aspect sentiment in a document by human beings, we propose a new Hierarchical Reinforcement Learning (HRL) approach to DASC. This approach incorporates clause selection and word selection strategies to tackle the data noise problem in the task of DASC. First, a high-level policy is proposed to select aspect-relevant clauses and discard noisy clauses. Then, a low-level policy is proposed to select sentiment-relevant words and discard noisy words inside the selected clauses. Finally, a sentiment rating predictor is designed to provide reward signals to guide both clause and word selection. Experimental results demonstrate the impressive effectiveness of the proposed approach to DASC over the state-of-the-art baselines.

pdf bib
SUDA-Alibaba at MRP 2019: Graph-Based Models with BERT
Yue Zhang | Wei Jiang | Qingrong Xia | Junjie Cao | Rui Wang | Zhenghua Li | Min Zhang
Proceedings of the Shared Task on Cross-Framework Meaning Representation Parsing at the 2019 Conference on Natural Language Learning

In this paper, we describe our participating systems in the shared task on Cross- Framework Meaning Representation Parsing (MRP) at the 2019 Conference for Computational Language Learning (CoNLL). The task includes five frameworks for graph-based meaning representations, i.e., DM, PSD, EDS, UCCA, and AMR. One common characteristic of our systems is that we employ graph-based methods instead of transition-based methods when predicting edges between nodes. For SDP, we jointly perform edge prediction, frame tagging, and POS tagging via multi-task learning (MTL). For UCCA, we also jointly model a constituent tree parsing and a remote edge recovery task. For both EDS and AMR, we produce nodes first and edges second in a pipeline fashion. External resources like BERT are found helpful for all frameworks except AMR. Our final submission ranks the third on the overall MRP evaluation metric, the first on EDS and the second on UCCA.

pdf bib
Semi-supervised Domain Adaptation for Dependency Parsing
Zhenghua Li | Xue Peng | Min Zhang | Rui Wang | Luo Si
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

During the past decades, due to the lack of sufficient labeled data, most studies on cross-domain parsing focus on unsupervised domain adaptation, assuming there is no target-domain training data. However, unsupervised approaches make limited progress so far due to the intrinsic difficulty of both domain adaptation and parsing. This paper tackles the semi-supervised domain adaptation problem for Chinese dependency parsing, based on two newly-annotated large-scale domain-aware datasets. We propose a simple domain embedding approach to merge the source- and target-domain training data, which is shown to be more effective than both direct corpus concatenation and multi-task learning. In order to utilize unlabeled target-domain data, we employ the recent contextualized word representations and show that a simple fine-tuning procedure can further boost cross-domain parsing accuracy by large margin.

pdf bib
Sentence-Level Agreement for Neural Machine Translation
Mingming Yang | Rui Wang | Kehai Chen | Masao Utiyama | Eiichiro Sumita | Min Zhang | Tiejun Zhao
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

The training objective of neural machine translation (NMT) is to minimize the loss between the words in the translated sentences and those in the references. In NMT, there is a natural correspondence between the source sentence and the target sentence. However, this relationship has only been represented using the entire neural network and the training objective is computed in word-level. In this paper, we propose a sentence-level agreement module to directly minimize the difference between the representation of source and target sentence. The proposed agreement module can be integrated into NMT as an additional training objective function and can also be used to enhance the representation of the source sentences. Empirical results on the NIST Chinese-to-English and WMT English-to-German tasks show the proposed agreement module can significantly improve the NMT performance.

pdf bib
Zero-Shot Cross-Lingual Abstractive Sentence Summarization through Teaching Generation and Attention
Xiangyu Duan | Mingming Yin | Min Zhang | Boxing Chen | Weihua Luo
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

Abstractive Sentence Summarization (ASSUM) targets at grasping the core idea of the source sentence and presenting it as the summary. It is extensively studied using statistical models or neural models based on the large-scale monolingual source-summary parallel corpus. But there is no cross-lingual parallel corpus, whose source sentence language is different to the summary language, to directly train a cross-lingual ASSUM system. We propose to solve this zero-shot problem by using resource-rich monolingual ASSUM system to teach zero-shot cross-lingual ASSUM system on both summary word generation and attention. This teaching process is along with a back-translation process which simulates source-summary pairs. Experiments on cross-lingual ASSUM task show that our proposed method is significantly better than pipeline baselines and previous works, and greatly enhances the cross-lingual performances closer to the monolingual performances.

pdf bib
Aspect Sentiment Classification Towards Question-Answering with Reinforced Bidirectional Attention Network
Jingjing Wang | Changlong Sun | Shoushan Li | Xiaozhong Liu | Luo Si | Min Zhang | Guodong Zhou
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

In the literature, existing studies on aspect sentiment classification (ASC) focus on individual non-interactive reviews. This paper extends the research to interactive reviews and proposes a new research task, namely Aspect Sentiment Classification towards Question-Answering (ASC-QA), for real-world applications. This new task aims to predict sentiment polarities for specific aspects from interactive QA style reviews. In particular, a high-quality annotated corpus is constructed for ASC-QA to facilitate corresponding research. On this basis, a Reinforced Bidirectional Attention Network (RBAN) approach is proposed to address two inherent challenges in ASC-QA, i.e., semantic matching between question and answer, and data noise. Experimental results demonstrate the great advantage of the proposed approach to ASC-QA against several state-of-the-art baselines.

pdf bib
Code-Switching for Enhancing NMT with Pre-Specified Translation
Kai Song | Yue Zhang | Heng Yu | Weihua Luo | Kun Wang | Min Zhang
Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)

Leveraging user-provided translation to constrain NMT has practical significance. Existing methods can be classified into two main categories, namely the use of placeholder tags for lexicon words and the use of hard constraints during decoding. Both methods can hurt translation fidelity for various reasons. We investigate a data augmentation method, making code-switched training data by replacing source phrases with their target translations. Our method does not change the MNT model or decoding algorithm, allowing the model to learn lexicon translations by copying source-side target words. Extensive experiments show that our method achieves consistent improvements over existing approaches, improving translation of constrained words without hurting unconstrained words.

pdf bib
Syntax-Enhanced Neural Machine Translation with Syntax-Aware Word Representations
Meishan Zhang | Zhenghua Li | Guohong Fu | Min Zhang
Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)

Syntax has been demonstrated highly effective in neural machine translation (NMT). Previous NMT models integrate syntax by representing 1-best tree outputs from a well-trained parsing system, e.g., the representative Tree-RNN and Tree-Linearization methods, which may suffer from error propagation. In this work, we propose a novel method to integrate source-side syntax implicitly for NMT. The basic idea is to use the intermediate hidden representations of a well-trained end-to-end dependency parser, which are referred to as syntax-aware word representations (SAWRs). Then, we simply concatenate such SAWRs with ordinary word embeddings to enhance basic NMT models. The method can be straightforwardly integrated into the widely-used sequence-to-sequence (Seq2Seq) NMT models. We start with a representative RNN-based Seq2Seq baseline system, and test the effectiveness of our proposed method on two benchmark datasets of the Chinese-English and English-Vietnamese translation tasks, respectively. Experimental results show that the proposed approach is able to bring significant BLEU score improvements on the two datasets compared with the baseline, 1.74 points for Chinese-English translation and 0.80 point for English-Vietnamese translation, respectively. In addition, the approach also outperforms the explicit Tree-RNN and Tree-Linearization methods.

pdf bib
HLT@SUDA at SemEval-2019 Task 1: UCCA Graph Parsing as Constituent Tree Parsing
Wei Jiang | Zhenghua Li | Yu Zhang | Min Zhang
Proceedings of the 13th International Workshop on Semantic Evaluation

This paper describes a simple UCCA semantic graph parsing approach. The key idea is to convert a UCCA semantic graph into a constituent tree, in which extra labels are deliberately designed to mark remote edges and discontinuous nodes for future recovery. In this way, we can make use of existing syntactic parsing techniques. Based on the data statistics, we recover discontinuous nodes directly according to the output labels of the constituent parser and use a biaffine classification model to recover the more complex remote edges. The classification model and the constituent parser are simultaneously trained under the multi-task learning framework. We use the multilingual BERT as extra features in the open tracks. Our system ranks the first place in the six English/German closed/open tracks among seven participating systems. For the seventh cross-lingual track, where there is little training data for French, we propose a language embedding approach to utilize English and German training data, and our result ranks the second place.

2018

pdf bib
M-CNER: A Corpus for Chinese Named Entity Recognition in Multi-Domains
Qi Lu | YaoSheng Yang | Zhenghua Li | Wenliang Chen | Min Zhang
Proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC 2018)

pdf bib
Improving the Transformer Translation Model with Document-Level Context
Jiacheng Zhang | Huanbo Luan | Maosong Sun | Feifei Zhai | Jingfang Xu | Min Zhang | Yang Liu
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing

Although the Transformer translation model (Vaswani et al., 2017) has achieved state-of-the-art performance in a variety of translation tasks, how to use document-level context to deal with discourse phenomena problematic for Transformer still remains a challenge. In this work, we extend the Transformer model with a new context encoder to represent document-level context, which is then incorporated into the original encoder and decoder. As large-scale document-level parallel corpora are usually not available, we introduce a two-step training method to take full advantage of abundant sentence-level parallel corpora and limited document-level parallel corpora. Experiments on the NIST Chinese-English datasets and the IWSLT French-English datasets show that our approach improves over Transformer significantly.

pdf bib
Using active learning to expand training data for implicit discourse relation recognition
Yang Xu | Yu Hong | Huibin Ruan | Jianmin Yao | Min Zhang | Guodong Zhou
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing

We tackle discourse-level relation recognition, a problem of determining semantic relations between text spans. Implicit relation recognition is challenging due to the lack of explicit relational clues. The increasingly popular neural network techniques have been proven effective for semantic encoding, whereby widely employed to boost semantic relation discrimination. However, learning to predict semantic relations at a deep level heavily relies on a great deal of training data, but the scale of the publicly available data in this field is limited. In this paper, we follow Rutherford and Xue (2015) to expand the training data set using the corpus of explicitly-related arguments, by arbitrarily dropping the overtly presented discourse connectives. On the basis, we carry out an experiment of sampling, in which a simple active learning approach is used, so as to take the informative instances for data expansion. The goal is to verify whether the selective use of external data not only reduces the time consumption of retraining but also ensures a better system performance. Using the expanded training data, we retrain a convolutional neural network (CNN) based classifer which is a simplified version of Qin et al. (2016)’s stacking gated relation recognizer. Experimental results show that expanding the training set with small-scale carefully-selected external data yields substantial performance gain, with the improvements of about 4% for accuracy and 3.6% for F-score. This allows a weak classifier to achieve a comparable performance against the state-of-the-art systems.

pdf bib
Sentiment Classification towards Question-Answering with Hierarchical Matching Network
Chenlin Shen | Changlong Sun | Jingjing Wang | Yangyang Kang | Shoushan Li | Xiaozhong Liu | Luo Si | Min Zhang | Guodong Zhou
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing

In an e-commerce environment, user-oriented question-answering (QA) text pair could carry rich sentiment information. In this study, we propose a novel task/method to address QA sentiment analysis. In particular, we create a high-quality annotated corpus with specially-designed annotation guidelines for QA-style sentiment classification. On the basis, we propose a three-stage hierarchical matching network to explore deep sentiment information in a QA text pair. First, we segment both the question and answer text into sentences and construct a number of [Q-sentence, A-sentence] units in each QA text pair. Then, by leveraging a QA bidirectional matching layer, the proposed approach can learn the matching vectors of each [Q-sentence, A-sentence] unit. Finally, we characterize the importance of the generated matching vectors via a self-matching attention layer. Experimental results, comparing with a number of state-of-the-art baselines, demonstrate the impressive effectiveness of the proposed approach for QA-style sentiment classification.

pdf bib
Distantly Supervised NER with Partial Annotation Learning and Reinforcement Learning
Yaosheng Yang | Wenliang Chen | Zhenghua Li | Zhengqiu He | Min Zhang
Proceedings of the 27th International Conference on Computational Linguistics

A bottleneck problem with Chinese named entity recognition (NER) in new domains is the lack of annotated data. One solution is to utilize the method of distant supervision, which has been widely used in relation extraction, to automatically populate annotated training data without humancost. The distant supervision assumption here is that if a string in text is included in a predefined dictionary of entities, the string might be an entity. However, this kind of auto-generated data suffers from two main problems: incomplete and noisy annotations, which affect the performance of NER models. In this paper, we propose a novel approach which can partially solve the above problems of distant supervision for NER. In our approach, to handle the incomplete problem, we apply partial annotation learning to reduce the effect of unknown labels of characters. As for noisy annotation, we design an instance selector based on reinforcement learning to distinguish positive sentences from auto-generated annotations. In experiments, we create two datasets for Chinese named entity recognition in two domains with the help of distant supervision. The experimental results show that the proposed approach obtains better performance than the comparison systems on both two datasets.

pdf bib
One vs. Many QA Matching with both Word-level and Sentence-level Attention Network
Lu Wang | Shoushan Li | Changlong Sun | Luo Si | Xiaozhong Liu | Min Zhang | Guodong Zhou
Proceedings of the 27th International Conference on Computational Linguistics

Question-Answer (QA) matching is a fundamental task in the Natural Language Processing community. In this paper, we first build a novel QA matching corpus with informal text which is collected from a product reviewing website. Then, we propose a novel QA matching approach, namely One vs. Many Matching, which aims to address the novel scenario where one question sentence often has an answer with multiple sentences. Furthermore, we improve our matching approach by employing both word-level and sentence-level attentions for solving the noisy problem in the informal text. Empirical studies demonstrate the effectiveness of the proposed approach to question-answer matching.

pdf bib
Adaptive Weighting for Neural Machine Translation
Yachao Li | Junhui Li | Min Zhang
Proceedings of the 27th International Conference on Computational Linguistics

In the popular sequence to sequence (seq2seq) neural machine translation (NMT), there exist many weighted sum models (WSMs), each of which takes a set of input and generates one output. However, the weights in a WSM are independent of each other and fixed for all inputs, suggesting that by ignoring different needs of inputs, the WSM lacks effective control on the influence of each input. In this paper, we propose adaptive weighting for WSMs to control the contribution of each input. Specifically, we apply adaptive weighting for both GRU and the output state in NMT. Experimentation on Chinese-to-English translation and English-to-German translation demonstrates that the proposed adaptive weighting is able to much improve translation accuracy by achieving significant improvement of 1.49 and 0.92 BLEU points for the two translation tasks. Moreover, we discuss in-depth on what type of information is encoded in the encoder and how information influences the generation of target words in the decoder.

pdf bib
Supervised Treebank Conversion: Data and Approaches
Xinzhou Jiang | Zhenghua Li | Bo Zhang | Min Zhang | Sheng Li | Luo Si
Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Treebank conversion is a straightforward and effective way to exploit various heterogeneous treebanks for boosting parsing performance. However, previous work mainly focuses on unsupervised treebank conversion and has made little progress due to the lack of manually labeled data where each sentence has two syntactic trees complying with two different guidelines at the same time, referred as bi-tree aligned data. In this work, we for the first time propose the task of supervised treebank conversion. First, we manually construct a bi-tree aligned dataset containing over ten thousand sentences. Then, we propose two simple yet effective conversion approaches (pattern embedding and treeLSTM) based on the state-of-the-art deep biaffine parser. Experimental results show that 1) the two conversion approaches achieve comparable conversion accuracy, and 2) treebank conversion is superior to the widely used multi-task learning framework in multi-treebank exploitation and leads to significantly higher parsing accuracy.

pdf bib
Proceedings of the Seventh Named Entities Workshop
Nancy Chen | Rafael E. Banchs | Xiangyu Duan | Min Zhang | Haizhou Li
Proceedings of the Seventh Named Entities Workshop

pdf bib
NEWS 2018 Whitepaper
Nancy Chen | Xiangyu Duan | Min Zhang | Rafael E. Banchs | Haizhou Li
Proceedings of the Seventh Named Entities Workshop

Transliteration is defined as phonetic translation of names across languages. Transliteration of Named Entities (NEs) is necessary in many applications, such as machine translation, corpus alignment, cross-language IR, information extraction and automatic lexicon acquisition. All such systems call for high-performance transliteration, which is the focus of shared task in the NEWS 2018 workshop. The objective of the shared task is to promote machine transliteration research by providing a common benchmarking platform for the community to evaluate the state-of-the-art technologies.

pdf bib
Report of NEWS 2018 Named Entity Transliteration Shared Task
Nancy Chen | Rafael E. Banchs | Min Zhang | Xiangyu Duan | Haizhou Li
Proceedings of the Seventh Named Entities Workshop

This report presents the results from the Named Entity Transliteration Shared Task conducted as part of The Seventh Named Entities Workshop (NEWS 2018) held at ACL 2018 in Melbourne, Australia. Similar to previous editions of NEWS, the Shared Task featured 19 tasks on proper name transliteration, including 13 different languages and two different Japanese scripts. A total of 6 teams from 8 different institutions participated in the evaluation, submitting 424 runs, involving different transliteration methodologies. Four performance metrics were used to report the evaluation results. The NEWS shared task on machine transliteration has successfully achieved its objectives by providing a common ground for the research community to conduct comparative evaluations of state-of-the-art technologies that will benefit the future research and development in this area.

2017

pdf bib
Modeling Source Syntax for Neural Machine Translation
Junhui Li | Deyi Xiong | Zhaopeng Tu | Muhua Zhu | Min Zhang | Guodong Zhou
Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Even though a linguistics-free sequence to sequence model in neural machine translation (NMT) has certain capability of implicitly learning syntactic information of source sentences, this paper shows that source syntax can be explicitly incorporated into NMT effectively to provide further improvements. Specifically, we linearize parse trees of source sentences to obtain structural label sequences. On the basis, we propose three different sorts of encoders to incorporate source syntax into NMT: 1) Parallel RNN encoder that learns word and label annotation vectors parallelly; 2) Hierarchical RNN encoder that learns word and label annotation vectors in a two-level hierarchy; and 3) Mixed RNN encoder that stitchingly learns word and label annotation vectors over sequences where words and labels are mixed. Experimentation on Chinese-to-English translation demonstrates that all the three proposed syntactic encoders are able to improve translation accuracy. It is interesting to note that the simplest RNN encoder, i.e., Mixed RNN encoder yields the best performance with an significant improvement of 1.4 BLEU points. Moreover, an in-depth analysis from several perspectives is provided to reveal how source syntax benefits NMT.

pdf bib
Dependency Parsing with Partial Annotations: An Empirical Comparison
Yue Zhang | Zhenghua Li | Jun Lang | Qingrong Xia | Min Zhang
Proceedings of the Eighth International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

This paper describes and compares two straightforward approaches for dependency parsing with partial annotations (PA). The first approach is based on a forest-based training objective for two CRF parsers, i.e., a biaffine neural network graph-based parser (Biaffine) and a traditional log-linear graph-based parser (LLGPar). The second approach is based on the idea of constrained decoding for three parsers, i.e., a traditional linear graph-based parser (LGPar), a globally normalized neural network transition-based parser (GN3Par) and a traditional linear transition-based parser (LTPar). For the test phase, constrained decoding is also used for completing partial trees. We conduct experiments on Penn Treebank under three different settings for simulating PA, i.e., random, most uncertain, and divergent outputs from the five parsers. The results show that LLGPar is most effective in directly learning from PA, and other parsers can achieve best performance when PAs are completed into full trees by LLGPar.

pdf bib
Multi-Grained Chinese Word Segmentation
Chen Gong | Zhenghua Li | Min Zhang | Xinzhou Jiang
Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing

Traditionally, word segmentation (WS) adopts the single-grained formalism, where a sentence corresponds to a single word sequence. However, Sproat et al. (1997) show that the inter-native-speaker consistency ratio over Chinese word boundaries is only 76%, indicating single-grained WS (SWS) imposes unnecessary challenges on both manual annotation and statistical modeling. Moreover, WS results of different granularities can be complementary and beneficial for high-level applications. This work proposes and addresses multi-grained WS (MWS). We build a large-scale pseudo MWS dataset for model training and tuning by leveraging the annotation heterogeneity of three SWS datasets. Then we manually annotate 1,500 test sentences with true MWS annotations. Finally, we propose three benchmark approaches by casting MWS as constituent parsing and sequence labeling. Experiments and analysis lead to many interesting findings.

pdf bib
Translating Phrases in Neural Machine Translation
Xing Wang | Zhaopeng Tu | Deyi Xiong | Min Zhang
Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing

Phrases play an important role in natural language understanding and machine translation (Sag et al., 2002; Villavicencio et al., 2005). However, it is difficult to integrate them into current neural machine translation (NMT) which reads and generates sentences word by word. In this work, we propose a method to translate phrases in NMT by integrating a phrase memory storing target phrases from a phrase-based statistical machine translation (SMT) system into the encoder-decoder architecture of NMT. At each decoding step, the phrase memory is first re-written by the SMT model, which dynamically generates relevant target phrases with contextual information provided by the NMT model. Then the proposed model reads the phrase memory to make probability estimations for all phrases in the phrase memory. If phrase generation is carried on, the NMT decoder selects an appropriate phrase from the memory to perform phrase translation and updates its decoding state by consuming the words in the selected phrase. Otherwise, the NMT decoder generates a word from the vocabulary as the general NMT decoder does. Experiment results on the Chinese to English translation show that the proposed model achieves significant improvements over the baseline on various test sets.

2016

pdf bib
Variational Neural Discourse Relation Recognizer
Biao Zhang | Deyi Xiong | Jinsong Su | Qun Liu | Rongrong Ji | Hong Duan | Min Zhang
Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing

pdf bib
Variational Neural Machine Translation
Biao Zhang | Deyi Xiong | Jinsong Su | Hong Duan | Min Zhang
Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing

pdf bib
Fast Coupled Sequence Labeling on Heterogeneous Annotations via Context-aware Pruning
Zhenghua Li | Jiayuan Chao | Min Zhang | Jiwen Yang
Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing

pdf bib
Finding Arguments as Sequence Labeling in Discourse Parsing
Ziwei Fan | Zhenghua Li | Min Zhang
Proceedings of the CoNLL-16 shared task

pdf bib
Learning Event Expressions via Bilingual Structure Projection
Fangyuan Li | Ruihong Huang | Deyi Xiong | Min Zhang
Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers

Identifying events of a specific type is a challenging task as events in texts are described in numerous and diverse ways. Aiming to resolve high complexities of event descriptions, previous work (Huang and Riloff, 2013) proposes multi-faceted event recognition and a bootstrapping method to automatically acquire both event facet phrases and event expressions from unannotated texts. However, to ensure high quality of learned phrases, this method is constrained to only learn phrases that match certain syntactic structures. In this paper, we propose a bilingual structure projection algorithm that explores linguistic divergences between two languages (Chinese and English) and mines new phrases with new syntactic structures, which have been ignored in the previous work. Experiments show that our approach can successfully find novel event phrases and structures, e.g., phrases headed by nouns. Furthermore, the newly mined phrases are capable of recognizing additional event descriptions and increasing the recall of event recognition.

pdf bib
Distributed Representations for Building Profiles of Users and Items from Text Reviews
Wenliang Chen | Zhenjie Zhang | Zhenghua Li | Min Zhang
Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers

In this paper, we propose an approach to learn distributed representations of users and items from text comments for recommendation systems. Traditional recommendation algorithms, e.g. collaborative filtering and matrix completion, are not designed to exploit the key information hidden in the text comments, while existing opinion mining methods do not provide direct support to recommendation systems with useful features on users and items. Our approach attempts to construct vectors to represent profiles of users and items under a unified framework to maximize word appearance likelihood. Then, the vector representations are used for a recommendation task in which we predict scores on unobserved user-item pairs without given texts. The recommendation-aware distributed representation approach is fully supported by effective and efficient learning algorithms over massive text archive. Our empirical evaluations on real datasets show that our system outperforms the state-of-the-art baseline systems.

pdf bib
Improving Statistical Machine Translation with Selectional Preferences
Haiqing Tang | Deyi Xiong | Min Zhang | Zhengxian Gong
Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers

Long-distance semantic dependencies are crucial for lexical choice in statistical machine translation. In this paper, we study semantic dependencies between verbs and their arguments by modeling selectional preferences in the context of machine translation. We incorporate preferences that verbs impose on subjects and objects into translation. In addition, bilingual selectional preferences between source-side verbs and target-side arguments are also investigated. Our experiments on Chinese-to-English translation tasks with large-scale training data demonstrate that statistical machine translation using verbal selectional preferences can achieve statistically significant improvements over a state-of-the-art baseline.

pdf bib
Bilingual Autoencoders with Global Descriptors for Modeling Parallel Sentences
Biao Zhang | Deyi Xiong | Jinsong Su | Hong Duan | Min Zhang
Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers

Parallel sentence representations are important for bilingual and cross-lingual tasks in natural language processing. In this paper, we explore a bilingual autoencoder approach to model parallel sentences. We extract sentence-level global descriptors (e.g. min, max) from word embeddings, and construct two monolingual autoencoders over these descriptors on the source and target language. In order to tightly connect the two autoencoders with bilingual correspondences, we force them to share the same decoding parameters and minimize a corpus-level semantic distance between the two languages. Being optimized towards a joint objective function of reconstruction and semantic errors, our bilingual antoencoder is able to learn continuous-valued latent representations for parallel sentences. Experiments on both intrinsic and extrinsic evaluations on statistical machine translation tasks show that our autoencoder achieves substantial improvements over the baselines.

pdf bib
Active Learning for Dependency Parsing with Partial Annotation
Zhenghua Li | Min Zhang | Yue Zhang | Zhanyi Liu | Wenliang Chen | Hua Wu | Haifeng Wang
Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

pdf bib
Proceedings of the Sixth Named Entity Workshop
Xiangyu Duan | Rafael E. Banchs | Min Zhang | Haizhou Li | A Kumaran
Proceedings of the Sixth Named Entity Workshop

pdf bib
Whitepaper of NEWS 2016 Shared Task on Machine Transliteration
Xiangyu Duan | Min Zhang | Haizhou Li | Rafael Banchs | A Kumaran
Proceedings of the Sixth Named Entity Workshop

pdf bib
Report of NEWS 2016 Machine Transliteration Shared Task
Xiangyu Duan | Rafael Banchs | Min Zhang | Haizhou Li | A. Kumaran
Proceedings of the Sixth Named Entity Workshop

2015

pdf bib
Bilingual Correspondence Recursive Autoencoder for Statistical Machine Translation
Jinsong Su | Deyi Xiong | Biao Zhang | Yang Liu | Junfeng Yao | Min Zhang
Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing

pdf bib
Learning Semantic Representations for Nonterminals in Hierarchical Phrase-Based Translation
Xing Wang | Deyi Xiong | Min Zhang
Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing

pdf bib
Document-Level Machine Translation Evaluation with Gist Consistency and Text Cohesion
Zhengxian Gong | Min Zhang | Guodong Zhou
Proceedings of the Second Workshop on Discourse in Machine Translation

pdf bib
Proceedings of the Fifth Named Entity Workshop
Xiangyu Duan | Rafael E. Banchs | Min Zhang | Haizhou Li | A Kumaran
Proceedings of the Fifth Named Entity Workshop

pdf bib
Whitepaper of NEWS 2015 Shared Task on Machine Transliteration
Min Zhang | Haizhou Li | Rafael E. Banchs | A Kumaran
Proceedings of the Fifth Named Entity Workshop

pdf bib
Report of NEWS 2015 Machine Transliteration Shared Task
Rafael E. Banchs | Min Zhang | Xiangyu Duan | Haizhou Li | A. Kumaran
Proceedings of the Fifth Named Entity Workshop

pdf bib
A Context-Aware Topic Model for Statistical Machine Translation
Jinsong Su | Deyi Xiong | Yang Liu | Xianpei Han | Hongyu Lin | Junfeng Yao | Min Zhang
Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

pdf bib
Coupled Sequence Labeling on Heterogeneous Annotations: POS Tagging as a Case Study
Zhenghua Li | Jiayuan Chao | Min Zhang | Wenliang Chen
Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

2014

pdf bib
Ambiguity-aware Ensemble Training for Semi-supervised Dependency Parsing
Zhenghua Li | Min Zhang | Wenliang Chen
Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

pdf bib
A Sense-Based Translation Model for Statistical Machine Translation
Deyi Xiong | Min Zhang
Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

pdf bib
Semantics, Discourse and Statistical Machine Translation
Deyi Xiong | Min Zhang
Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics: Tutorials

pdf bib
Proceedings of The Third CIPS-SIGHAN Joint Conference on Chinese Language Processing
Le Sun | Chengqing Zong | Min Zhang | Gina-Anne Levow
Proceedings of The Third CIPS-SIGHAN Joint Conference on Chinese Language Processing

pdf bib
Soft Cross-lingual Syntax Projection for Dependency Parsing
Zhenghua Li | Min Zhang | Wenliang Chen
Proceedings of COLING 2014, the 25th International Conference on Computational Linguistics: Technical Papers

pdf bib
Feature Embedding for Dependency Parsing
Wenliang Chen | Yue Zhang | Min Zhang
Proceedings of COLING 2014, the 25th International Conference on Computational Linguistics: Technical Papers

pdf bib
Synchronous Constituent Context Model for Inducing Bilingual Synchronous Structures
Xiangyu Duan | Min Zhang | Qiaoming Zhu
Proceedings of COLING 2014, the 25th International Conference on Computational Linguistics: Technical Papers

pdf bib
Dependency Parsing: Past, Present, and Future
Wenliang Chen | Zhenghua Li | Min Zhang
Proceedings of COLING 2014, the 25th International Conference on Computational Linguistics: Tutorial Abstracts

pdf bib
Word Sense Induction for Machine Translation
Min Zhang
Proceedings of the 28th Pacific Asia Conference on Language, Information and Computing

2013

pdf bib
Semi-Supervised Feature Transformation for Dependency Parsing
Wenliang Chen | Min Zhang | Yue Zhang
Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing

pdf bib
Lexical Chain Based Cohesion Models for Document-Level Statistical Machine Translation
Deyi Xiong | Yang Ding | Min Zhang | Chew Lim Tan
Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing

pdf bib
Feature-Rich Segment-Based News Event Detection on Twitter
Yanxia Qin | Yue Zhang | Min Zhang | Dequan Zheng
Proceedings of the Sixth International Joint Conference on Natural Language Processing

pdf bib
Fast and Accurate Shift-Reduce Constituent Parsing
Muhua Zhu | Yue Zhang | Wenliang Chen | Min Zhang | Jingbo Zhu
Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

2012

pdf bib
Utilizing Dependency Language Models for Graph-based Dependency Parsing Models
Wenliang Chen | Min Zhang | Haizhou Li
Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

pdf bib
A Topic Similarity Model for Hierarchical Phrase-based Translation
Xinyan Xiao | Deyi Xiong | Min Zhang | Qun Liu | Shouxun Lin
Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

pdf bib
Modeling the Translation of Predicate-Argument Structure for SMT
Deyi Xiong | Min Zhang | Haizhou Li
Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

pdf bib
Proceedings of the ACL 2012 System Demonstrations
Min Zhang
Proceedings of the ACL 2012 System Demonstrations

pdf bib
Proceedings of the 4th Named Entity Workshop (NEWS) 2012
Min Zhang | Haizhou Li | A Kumaran
Proceedings of the 4th Named Entity Workshop (NEWS) 2012

pdf bib
Whitepaper of NEWS 2012 Shared Task on Machine Transliteration
Min Zhang | Haizhou Li | A Kumaran | Ming Liu
Proceedings of the 4th Named Entity Workshop (NEWS) 2012

pdf bib
Report of NEWS 2012 Machine Transliteration Shared Task
Min Zhang | Haizhou Li | A Kumaran | Ming Liu
Proceedings of the 4th Named Entity Workshop (NEWS) 2012

pdf bib
Improved Constituent Context Model with Features
Yun Huang | Min Zhang | Chew Lim Tan
Proceedings of the 26th Pacific Asia Conference on Language, Information, and Computation

pdf bib
Improved Combinatory Categorial Grammar Induction with Boundary Words and Bayesian Inference
Yun Huang | Min Zhang | Chew-Lim Tan
Proceedings of COLING 2012

pdf bib
A Separately Passive-Aggressive Training Algorithm for Joint POS Tagging and Dependency Parsing
Zhenghua Li | Min Zhang | Wanxiang Che | Ting Liu
Proceedings of COLING 2012

pdf bib
Classifier-Based Tense Model for SMT
ZhengXian Gong | Min Zhang | ChewLim Tan | GuoDong Zhou
Proceedings of COLING 2012: Posters

pdf bib
N-gram-based Tense Models for Statistical Machine Translation
Zhengxian Gong | Min Zhang | Chew Lim Tan | Guodong Zhou
Proceedings of the 2012 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning

2011

pdf bib
SMT Helps Bitext Dependency Parsing
Wenliang Chen | Jun’ichi Kazama | Min Zhang | Yoshimasa Tsuruoka | Yujie Zhang | Yiou Wang | Kentaro Torisawa | Haizhou Li
Proceedings of the 2011 Conference on Empirical Methods in Natural Language Processing

pdf bib
Cache-based Document-level Statistical Machine Translation
Zhengxian Gong | Min Zhang | Guodong Zhou
Proceedings of the 2011 Conference on Empirical Methods in Natural Language Processing

pdf bib
Joint Models for Chinese POS Tagging and Dependency Parsing
Zhenghua Li | Min Zhang | Wanxiang Che | Ting Liu | Wenliang Chen | Haizhou Li
Proceedings of the 2011 Conference on Empirical Methods in Natural Language Processing

pdf bib
Proceedings of the 3rd Named Entities Workshop (NEWS 2011)
Min Zhang | Haizhou Li | A Kumaran
Proceedings of the 3rd Named Entities Workshop (NEWS 2011)

pdf bib
Report of NEWS 2011 Machine Transliteration Shared Task
Min Zhang | Haizhou Li | A Kumaran | Ming Liu
Proceedings of the 3rd Named Entities Workshop (NEWS 2011)

pdf bib
Whitepaper of NEWS 2011 Shared Task on Machine Transliteration
Min Zhang | A Kumaran | Haizhou Li
Proceedings of the 3rd Named Entities Workshop (NEWS 2011)

pdf bib
CLGVSM: Adapting Generalized Vector Space Model to Cross-lingual Document Clustering
Guoyu Tang | Yunqing Xia | Min Zhang | Haizhou Li | Fang Zheng
Proceedings of 5th International Joint Conference on Natural Language Processing

pdf bib
Joint Alignment and Artificial Data Generation: An Empirical Study of Pivot-based Machine Transliteration
Min Zhang | Xiangyu Duan | Ming Liu | Yunqing Xia | Haizhou Li
Proceedings of 5th International Joint Conference on Natural Language Processing

pdf bib
Enhancing Language Models in Statistical Machine Translation with Backward N-grams and Mutual Information Triggers
Deyi Xiong | Min Zhang | Haizhou Li
Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies

pdf bib
Nonparametric Bayesian Machine Transliteration with Synchronous Adaptor Grammars
Yun Huang | Min Zhang | Chew Lim Tan
Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies

2010

pdf bib
Learning Translation Boundaries for Phrase-Based Decoding
Deyi Xiong | Min Zhang | Haizhou Li
Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the Association for Computational Linguistics

pdf bib
Linguistically Annotated Reordering: Evaluation and Analysis
Deyi Xiong | Min Zhang | Aiti Aw | Haizhou Li
Computational Linguistics, Volume 36, Issue 3 - September 2010

pdf bib
Book Review: Introduction to Chinese Natural Language Processing by Kam-Fai Wong, Wenjie Li, Ruifeng Xu, and Zheng-sheng Zhang
Min Zhang
Computational Linguistics, Volume 36, Issue 4 - December 2010

pdf bib
Report of NEWS 2010 Transliteration Generation Shared Task
Haizhou Li | A Kumaran | Min Zhang | Vladimir Pervouchine
Proceedings of the 2010 Named Entities Workshop

pdf bib
Whitepaper of NEWS 2010 Shared Task on Transliteration Generation
Haizhou Li | A Kumaran | Min Zhang | Vladimir Pervouchine
Proceedings of the 2010 Named Entities Workshop

pdf bib
Proceedings of the 4th Workshop on Cross Lingual Information Access
Sudeshna Sarkar | Min Zhang | Adam Lopez | Raghavendra Udupa
Proceedings of the 4th Workshop on Cross Lingual Information Access

pdf bib
Discriminative Induction of Sub-Tree Alignment using Limited Labeled Data
Jun Sun | Min Zhang | Chew Lim Tan
Proceedings of the 23rd International Conference on Computational Linguistics (Coling 2010)

pdf bib
EM-based Hybrid Model for Bilingual Terminology Extraction from Comparable Corpora
Lianhau Lee | Aiti Aw | Min Zhang | Haizhou Li
Coling 2010: Posters

pdf bib
Head-modifier Relation based Non-lexical Reordering Model for Phrase-Based Translation
Shui Liu | Sheng Li | Tiejun Zhao | Min Zhang | Pengyuan Liu
Coling 2010: Posters

pdf bib
Improving Name Origin Recognition with Context Features and Unlabelled Data
Vladimir Pervouchine | Min Zhang | Ming Liu | Haizhou Li
Coling 2010: Posters

pdf bib
Machine Transliteration: Leveraging on Third Languages
Min Zhang | Xiangyu Duan | Vladimir Pervouchine | Haizhou Li
Coling 2010: Posters

pdf bib
Pseudo-Word for Phrase-Based Machine Translation
Xiangyu Duan | Min Zhang | Haizhou Li
Proceedings of the 48th Annual Meeting of the Association for Computational Linguistics

pdf bib
Exploring Syntactic Structural Features for Sub-Tree Alignment Using Bilingual Tree Kernels
Jun Sun | Min Zhang | Chew Lim Tan
Proceedings of the 48th Annual Meeting of the Association for Computational Linguistics

pdf bib
Error Detection for Statistical Machine Translation Using Linguistic Features
Deyi Xiong | Min Zhang | Haizhou Li
Proceedings of the 48th Annual Meeting of the Association for Computational Linguistics

pdf bib
Convolution Kernel over Packed Parse Forest
Min Zhang | Hui Zhang | Haizhou Li
Proceedings of the 48th Annual Meeting of the Association for Computational Linguistics

pdf bib
Non-Isomorphic Forest Pair Translation
Hui Zhang | Min Zhang | Haizhou Li | Eng Siong Chng
Proceedings of the 2010 Conference on Empirical Methods in Natural Language Processing

2009

pdf bib
Tree Kernel-based SVM with Structured Syntactic Knowledge for BTG-based Phrase Reordering
Min Zhang | Haizhou Li
Proceedings of the 2009 Conference on Empirical Methods in Natural Language Processing

pdf bib
Fast Translation Rule Matching for Syntax-based Statistical Machine Translation
Hui Zhang | Min Zhang | Haizhou Li | Chew Lim Tan
Proceedings of the 2009 Conference on Empirical Methods in Natural Language Processing

pdf bib
K-Best Combination of Syntactic Parsers
Hui Zhang | Min Zhang | Chew Lim Tan | Haizhou Li
Proceedings of the 2009 Conference on Empirical Methods in Natural Language Processing

pdf bib
Report of NEWS 2009 Machine Transliteration Shared Task
Haizhou Li | A Kumaran | Vladimir Pervouchine | Min Zhang
Proceedings of the 2009 Named Entities Workshop: Shared Task on Transliteration (NEWS 2009)

pdf bib
Whitepaper of NEWS 2009 Machine Transliteration Shared Task
Haizhou Li | A Kumaran | Min Zhang | Vladimir Pervouchine
Proceedings of the 2009 Named Entities Workshop: Shared Task on Transliteration (NEWS 2009)

pdf bib
Forest-based Tree Sequence to String Translation Model
Hui Zhang | Min Zhang | Haizhou Li | Aiti Aw | Chew Lim Tan
Proceedings of the Joint Conference of the 47th Annual Meeting of the ACL and the 4th International Joint Conference on Natural Language Processing of the AFNLP

pdf bib
A Syntax-Driven Bracketing Model for Phrase-Based Translation
Deyi Xiong | Min Zhang | Aiti Aw | Haizhou Li
Proceedings of the Joint Conference of the 47th Annual Meeting of the ACL and the 4th International Joint Conference on Natural Language Processing of the AFNLP

pdf bib
A non-contiguous Tree Sequence Alignment-based Model for Statistical Machine Translation
Jun Sun | Min Zhang | Chew Lim Tan
Proceedings of the Joint Conference of the 47th Annual Meeting of the ACL and the 4th International Joint Conference on Natural Language Processing of the AFNLP

pdf bib
A Comparative Study of Hypothesis Alignment and its Improvement for Machine Translation System Combination
Boxing Chen | Min Zhang | Haizhou Li | Aiti Aw
Proceedings of the Joint Conference of the 47th Annual Meeting of the ACL and the 4th International Joint Conference on Natural Language Processing of the AFNLP

pdf bib
MARS: Multilingual Access and Retrieval System with Enhanced Query Translation and Document Retrieval
Lianhau Lee | Aiti Aw | Thuy Vu | Sharifah Aljunied Mahani | Min Zhang | Haizhou Li
Proceedings of the ACL-IJCNLP 2009 Software Demonstrations

pdf bib
Feature-Based Method for Document Alignment in Comparable News Corpora
Thuy Vu | Ai Ti Aw | Min Zhang
Proceedings of the 12th Conference of the European Chapter of the ACL (EACL 2009)

2008

pdf bib
A Tree Sequence Alignment-based Tree-to-Tree Translation Model
Min Zhang | Hongfei Jiang | Aiti Aw | Haizhou Li | Chew Lim Tan | Sheng Li
Proceedings of ACL-08: HLT

pdf bib
A Linguistically Annotated Reordering Model for BTG-based Statistical Machine Translation
Deyi Xiong | Min Zhang | Aiti Aw | Haizhou Li
Proceedings of ACL-08: HLT, Short Papers

pdf bib
Exploiting N-best Hypotheses for SMT Self-Enhancement
Boxing Chen | Min Zhang | Aiti Aw | Haizhou Li
Proceedings of ACL-08: HLT, Short Papers

pdf bib
Name Origin Recognition Using Maximum Entropy Model and Diverse Features
Min Zhang | Chengjie Sun | Haizhou Li | AiTi Aw | Chew Lim Tan | Xiaolong Wang
Proceedings of the Third International Joint Conference on Natural Language Processing: Volume-I

pdf bib
Identify Temporal Websites Based on User Behavior Analysis
Yong Wang | Yiqun Liu | Min Zhang | Shaoping Ma | Liyun Ru
Proceedings of the Third International Joint Conference on Natural Language Processing: Volume-I

pdf bib
Refinements in BTG-based Statistical Machine Translation
Deyi Xiong | Min Zhang | AiTi Aw | Haitao Mi | Qun Liu | Shouxun Lin
Proceedings of the Third International Joint Conference on Natural Language Processing: Volume-I

pdf bib
Term Extraction Through Unithood and Termhood Unification
Thuy Vu | Ai Ti Aw | Min Zhang
Proceedings of the Third International Joint Conference on Natural Language Processing: Volume-II

pdf bib
Fast Computing Grammar-driven Convolution Tree Kernel for Semantic Role Labeling
Wanxiang Che | Min Zhang | Ai Ti Aw | Chew Lim Tan | Ting Liu | Sheng Li
Proceedings of the Third International Joint Conference on Natural Language Processing: Volume-II

pdf bib
Regenerating Hypotheses for Statistical Machine Translation
Boxing Chen | Min Zhang | Aiti Aw | Haizhou Li
Proceedings of the 22nd International Conference on Computational Linguistics (Coling 2008)

pdf bib
Linguistically Annotated BTG for Statistical Machine Translation
Deyi Xiong | Min Zhang | Aiti Aw | Haizhou Li
Proceedings of the 22nd International Conference on Computational Linguistics (Coling 2008)

pdf bib
Grammar Comparison Study for Translational Equivalence Modeling and Statistical Machine Translation
Min Zhang | Hongfei Jiang | Haizhou Li | Aiti Aw | Sheng Li
Proceedings of the 22nd International Conference on Computational Linguistics (Coling 2008)

2007

pdf bib
A Grammar-driven Convolution Tree Kernel for Semantic Role Classification
Min Zhang | Wanxiang Che | Aiti Aw | Chew Lim Tan | Guodong Zhou | Ting Liu | Sheng Li
Proceedings of the 45th Annual Meeting of the Association of Computational Linguistics

pdf bib
Tree Kernel-Based Relation Extraction with Context-Sensitive Structured Parse Tree Information
GuoDong Zhou | Min Zhang | Dong Hong Ji | QiaoMing Zhu
Proceedings of the 2007 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning (EMNLP-CoNLL)

2006

pdf bib
Modeling Commonality among Related Classes in Relation Extraction
GuoDong Zhou | Jian Su | Min Zhang
Proceedings of the 21st International Conference on Computational Linguistics and 44th Annual Meeting of the Association for Computational Linguistics

pdf bib
A Composite Kernel to Extract Relations between Entities with Both Flat and Structured Features
Min Zhang | Jie Zhang | Jian Su | GuoDong Zhou
Proceedings of the 21st International Conference on Computational Linguistics and 44th Annual Meeting of the Association for Computational Linguistics

pdf bib
A Phrase-Based Statistical Model for SMS Text Normalization
AiTi Aw | Min Zhang | Juan Xiao | Jian Su
Proceedings of the COLING/ACL 2006 Main Conference Poster Sessions

pdf bib
A Hybrid Convolution Tree Kernel for Semantic Role Labeling
Wanxiang Che | Min Zhang | Ting Liu | Sheng Li
Proceedings of the COLING/ACL 2006 Main Conference Poster Sessions

pdf bib
Chinese Word Segmentation and Named Entity Recognition Based on a Context-Dependent Mutual Information Independence Model
Min Zhang | GuoDong Zhou | LingPeng Yang | DongHong Ji
Proceedings of the Fifth SIGHAN Workshop on Chinese Language Processing

pdf bib
Exploring Syntactic Features for Relation Extraction using a Convolution Tree Kernel
Min Zhang | Jie Zhang | Jian Su
Proceedings of the Human Language Technology Conference of the NAACL, Main Conference

2005

pdf bib
Discovering Relations Between Named Entities from a Large Raw Corpus Using Tree Similarity-Based Clustering
Min Zhang | Jian Su | Danmei Wang | Guodong Zhou | Chew Lim Tan
Second International Joint Conference on Natural Language Processing: Full Papers

pdf bib
Phrase-Based Statistical Machine Translation: A Level of Detail Approach
Hendra Setiawan | Haizhou Li | Min Zhang | Beng Chin Ooi
Second International Joint Conference on Natural Language Processing: Full Papers

pdf bib
A Phrase-Based Context-Dependent Joint Probability Model for Named Entity Translation
Min Zhang | Haizhou Li | Jian Su | Hendra Setiawan
Second International Joint Conference on Natural Language Processing: Full Papers

pdf bib
Exploring Various Knowledge in Relation Extraction
GuoDong Zhou | Jian Su | Jie Zhang | Min Zhang
Proceedings of the 43rd Annual Meeting of the Association for Computational Linguistics (ACL’05)

2004

pdf bib
A Joint Source-Channel Model for Machine Transliteration
Haizhou Li | Min Zhang | Jian Su
Proceedings of the 42nd Annual Meeting of the Association for Computational Linguistics (ACL-04)

pdf bib
Direct Orthographical Mapping for Machine Transliteration
Min Zhang | Haizhou Li | Jian Su
COLING 2004: Proceedings of the 20th International Conference on Computational Linguistics

2002

pdf bib
Improving Language Model Size Reduction using Better Pruning Criteria
Jianfeng Gao | Min Zhang
Proceedings of the 40th Annual Meeting of the Association for Computational Linguistics

pdf bib
Self-Organizing Chinese and Japanese Semantic Maps
Qing Ma | Min Zhang | Masaki Murata | Ming Zhou | Hitoshi Isahara
COLING 2002: The 19th International Conference on Computational Linguistics

Search
Co-authors