Meng Jiang


pdf bib
Crossing Variational Autoencoders for Answer Retrieval
Wenhao Yu | Lingfei Wu | Qingkai Zeng | Shu Tao | Yu Deng | Meng Jiang
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

Answer retrieval is to find the most aligned answer from a large set of candidates given a question. Learning vector representations of questions/answers is the key factor. Question-answer alignment and question/answer semantics are two important signals for learning the representations. Existing methods learned semantic representations with dual encoders or dual variational auto-encoders. The semantic information was learned from language models or question-to-question (answer-to-answer) generative processes. However, the alignment and semantics were too separate to capture the aligned semantics between question and answer. In this work, we propose to cross variational auto-encoders by generating questions with aligned answers and generating answers with aligned questions. Experiments show that our method outperforms the state-of-the-art answer retrieval method on SQuAD.

pdf bib
Few-Shot Multi-Hop Relation Reasoning over Knowledge Bases
Chuxu Zhang | Lu Yu | Mandana Saebi | Meng Jiang | Nitesh Chawla
Findings of the Association for Computational Linguistics: EMNLP 2020

Multi-hop relation reasoning over knowledge base is to generate effective and interpretable relation prediction through reasoning paths. The current methods usually require sufficient training data (fact triples) for each query relation, impairing their performances over few-shot relations (with limited triples) which are common in knowledge base. To this end, we propose FIRE, a novel few-shot multi-hop relation learning model. FIRE applies reinforcement learning to model the sequential steps of multi-hop reasoning, besides performs heterogeneous structure encoding and knowledge-aware search space pruning. The meta-learning technique is employed to optimize model parameters that could quickly adapt to few-shot relations. Empirical study on two datasets demonstrate that FIRE outperforms state-of-the-art methods.

pdf bib
Tri-Train: Automatic Pre-Fine Tuning between Pre-Training and Fine-Tuning for SciNER
Qingkai Zeng | Wenhao Yu | Mengxia Yu | Tianwen Jiang | Tim Weninger | Meng Jiang
Findings of the Association for Computational Linguistics: EMNLP 2020

The training process of scientific NER models is commonly performed in two steps: i) Pre-training a language model by self-supervised tasks on huge data and ii) fine-tune training with small labelled data. The success of the strategy depends on the relevance between the data domains and between the tasks. However, gaps are found in practice when the target domains are specific and small. We propose a novel framework to introduce a “pre-fine tuning” step between pre-training and fine-tuning. It constructs a corpus by selecting sentences from unlabeled documents that are the most relevant with the labelled training data. Instead of predicting tokens in random spans, the pre-fine tuning task is to predict tokens in entity candidates identified by text mining methods. Pre-fine tuning is automatic and light-weight because the corpus size can be much smaller than pre-training data to achieve a better performance. Experiments on seven benchmarks demonstrate the effectiveness.

pdf bib
A Probabilistic Model with Commonsense Constraints for Pattern-based Temporal Fact Extraction
Yang Zhou | Tong Zhao | Meng Jiang
Proceedings of the Third Workshop on Fact Extraction and VERification (FEVER)

Textual patterns (e.g., Country’s president Person) are specified and/or generated for extracting factual information from unstructured data. Pattern-based information extraction methods have been recognized for their efficiency and transferability. However, not every pattern is reliable: A major challenge is to derive the most complete and accurate facts from diverse and sometimes conflicting extractions. In this work, we propose a probabilistic graphical model which formulates fact extraction in a generative process. It automatically infers true facts and pattern reliability without any supervision. It has two novel designs specially for temporal facts: (1) it models pattern reliability on two types of time signals, including temporal tag in text and text generation time; (2) it models commonsense constraints as observable variables. Experimental results demonstrate that our model significantly outperforms existing methods on extracting true temporal facts from news data.

pdf bib
A Technical Question Answering System with Transfer Learning
Wenhao Yu | Lingfei Wu | Yu Deng | Ruchi Mahindru | Qingkai Zeng | Sinem Guven | Meng Jiang
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations

In recent years, the need for community technical question-answering sites has increased significantly. However, it is often expensive for human experts to provide timely and helpful responses on those forums. We develop TransTQA, which is a novel system that offers automatic responses by retrieving proper answers based on correctly answered similar questions in the past. TransTQA is built upon a siamese ALBERT network, which enables it to respond quickly and accurately. Furthermore, TransTQA adopts a standard deep transfer learning strategy to improve its capability of supporting multiple technical domains.


pdf bib
Multi-Input Multi-Output Sequence Labeling for Joint Extraction of Fact and Condition Tuples from Scientific Text
Tianwen Jiang | Tong Zhao | Bing Qin | Ting Liu | Nitesh Chawla | Meng Jiang
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

Condition is essential in scientific statement. Without the conditions (e.g., equipment, environment) that were precisely specified, facts (e.g., observations) in the statements may no longer be valid. Existing ScienceIE methods, which aim at extracting factual tuples from scientific text, do not consider the conditions. In this work, we propose a new sequence labeling framework (as well as a new tag schema) to jointly extract the fact and condition tuples from statement sentences. The framework has (1) a multi-output module to generate one or multiple tuples and (2) a multi-input module to feed in multiple types of signals as sequences. It improves F1 score relatively by 4.2% on BioNLP2013 and by 6.2% on a new bio-text dataset for tuple extraction.

pdf bib
Faceted Hierarchy: A New Graph Type to Organize Scientific Concepts and a Construction Method
Qingkai Zeng | Mengxia Yu | Wenhao Yu | JinJun Xiong | Yiyu Shi | Meng Jiang
Proceedings of the Thirteenth Workshop on Graph-Based Methods for Natural Language Processing (TextGraphs-13)

On a scientific concept hierarchy, a parent concept may have a few attributes, each of which has multiple values being a group of child concepts. We call these attributes facets: classification has a few facets such as application (e.g., face recognition), model (e.g., svm, knn), and metric (e.g., precision). In this work, we aim at building faceted concept hierarchies from scientific literature. Hierarchy construction methods heavily rely on hypernym detection, however, the faceted relations are parent-to-child links but the hypernym relation is a multi-hop, i.e., ancestor-to-descendent link with a specific facet “type-of”. We use information extraction techniques to find synonyms, sibling concepts, and ancestor-descendent relations from a data science corpus. And we propose a hierarchy growth algorithm to infer the parent-child links from the three types of relationships. It resolves conflicts by maintaining the acyclic structure of a hierarchy.


pdf bib
Life-iNet: A Structured Network-Based Knowledge Exploration and Analytics System for Life Sciences
Xiang Ren | Jiaming Shen | Meng Qu | Xuan Wang | Zeqiu Wu | Qi Zhu | Meng Jiang | Fangbo Tao | Saurabh Sinha | David Liem | Peipei Ping | Richard Weinshilboum | Jiawei Han
Proceedings of ACL 2017, System Demonstrations