Meng Fang


pdf bib
Pretrained Language Models for Dialogue Generation with Multiple Input Sources
Yu Cao | Wei Bi | Meng Fang | Dacheng Tao
Findings of the Association for Computational Linguistics: EMNLP 2020

Large-scale pretrained language models have achieved outstanding performance on natural language understanding tasks. However, it is still under investigating how to apply them to dialogue generation tasks, especially those with responses conditioned on multiple sources. Previous work simply concatenates all input sources or averages information from different input sources. In this work, we study dialogue models with multiple input sources adapted from the pretrained language model GPT2. We explore various methods to fuse multiple separate attention information corresponding to different sources. Our experimental results show that proper fusion methods deliver higher relevance with dialogue history than simple fusion baselines.


pdf bib
Dual Adversarial Neural Transfer for Low-Resource Named Entity Recognition
Joey Tianyi Zhou | Hao Zhang | Di Jin | Hongyuan Zhu | Meng Fang | Rick Siow Mong Goh | Kenneth Kwok
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

We propose a new neural transfer method termed Dual Adversarial Transfer Network (DATNet) for addressing low-resource Named Entity Recognition (NER). Specifically, two variants of DATNet, i.e., DATNet-F and DATNet-P, are investigated to explore effective feature fusion between high and low resource. To address the noisy and imbalanced training data, we propose a novel Generalized Resource-Adversarial Discriminator (GRAD). Additionally, adversarial training is adopted to boost model generalization. In experiments, we examine the effects of different components in DATNet across domains and languages and show that significant improvement can be obtained especially for low-resource data, without augmenting any additional hand-crafted features and pre-trained language model.

pdf bib
Bridging the Gap: Improve Part-of-speech Tagging for Chinese Social Media Texts with Foreign Words
Dingmin Wang | Meng Fang | Yan Song | Juntao Li
Proceedings of the 5th Workshop on Semantic Deep Learning (SemDeep-5)

pdf bib
BAG: Bi-directional Attention Entity Graph Convolutional Network for Multi-hop Reasoning Question Answering
Yu Cao | Meng Fang | Dacheng Tao
Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)

Multi-hop reasoning question answering requires deep comprehension of relationships between various documents and queries. We propose a Bi-directional Attention Entity Graph Convolutional Network (BAG), leveraging relationships between nodes in an entity graph and attention information between a query and the entity graph, to solve this task. Graph convolutional networks are used to obtain a relation-aware representation of nodes for entity graphs built from documents with multi-level features. Bidirectional attention is then applied on graphs and queries to generate a query-aware nodes representation, which will be used for the final prediction. Experimental evaluation shows BAG achieves state-of-the-art accuracy performance on the QAngaroo WIKIHOP dataset.


pdf bib
Model Transfer for Tagging Low-resource Languages using a Bilingual Dictionary
Meng Fang | Trevor Cohn
Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)

Cross-lingual model transfer is a compelling and popular method for predicting annotations in a low-resource language, whereby parallel corpora provide a bridge to a high-resource language, and its associated annotated corpora. However, parallel data is not readily available for many languages, limiting the applicability of these approaches. We address these drawbacks in our framework which takes advantage of cross-lingual word embeddings trained solely on a high coverage dictionary. We propose a novel neural network model for joint training from both sources of data based on cross-lingual word embeddings, and show substantial empirical improvements over baseline techniques. We also propose several active learning heuristics, which result in improvements over competitive benchmark methods.

pdf bib
Learning how to Active Learn: A Deep Reinforcement Learning Approach
Meng Fang | Yuan Li | Trevor Cohn
Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing

Active learning aims to select a small subset of data for annotation such that a classifier learned on the data is highly accurate. This is usually done using heuristic selection methods, however the effectiveness of such methods is limited and moreover, the performance of heuristics varies between datasets. To address these shortcomings, we introduce a novel formulation by reframing the active learning as a reinforcement learning problem and explicitly learning a data selection policy, where the policy takes the role of the active learning heuristic. Importantly, our method allows the selection policy learned using simulation to one language to be transferred to other languages. We demonstrate our method using cross-lingual named entity recognition, observing uniform improvements over traditional active learning algorithms.


pdf bib
Learning when to trust distant supervision: An application to low-resource POS tagging using cross-lingual projection
Meng Fang | Trevor Cohn
Proceedings of The 20th SIGNLL Conference on Computational Natural Language Learning