Md Tahmid Rahman Laskar


2020

pdf bib
Contextualized Embeddings based Transformer Encoder for Sentence Similarity Modeling in Answer Selection Task
Md Tahmid Rahman Laskar | Jimmy Xiangji Huang | Enamul Hoque
Proceedings of the 12th Language Resources and Evaluation Conference

Word embeddings that consider context have attracted great attention for various natural language processing tasks in recent years. In this paper, we utilize contextualized word embeddings with the transformer encoder for sentence similarity modeling in the answer selection task. We present two different approaches (feature-based and fine-tuning-based) for answer selection. In the feature-based approach, we utilize two types of contextualized embeddings, namely the Embeddings from Language Models (ELMo) and the Bidirectional Encoder Representations from Transformers (BERT) and integrate each of them with the transformer encoder. We find that integrating these contextual embeddings with the transformer encoder is effective to improve the performance of sentence similarity modeling. In the second approach, we fine-tune two pre-trained transformer encoder models for the answer selection task. Based on our experiments on six datasets, we find that the fine-tuning approach outperforms the feature-based approach on all of them. Among our fine-tuning-based models, the Robustly Optimized BERT Pretraining Approach (RoBERTa) model results in new state-of-the-art performance across five datasets.

pdf bib
WSL-DS: Weakly Supervised Learning with Distant Supervision for Query Focused Multi-Document Abstractive Summarization
Md Tahmid Rahman Laskar | Enamul Hoque | Jimmy Xiangji Huang
Proceedings of the 28th International Conference on Computational Linguistics

In the Query Focused Multi-Document Summarization (QF-MDS) task, a set of documents and a query are given where the goal is to generate a summary from these documents based on the given query. However, one major challenge for this task is the lack of availability of labeled training datasets. To overcome this issue, in this paper, we propose a novel weakly supervised learning approach via utilizing distant supervision. In particular, we use datasets similar to the target dataset as the training data where we leverage pre-trained sentence similarity models to generate the weak reference summary of each individual document in a document set from the multi-document gold reference summaries. Then, we iteratively train our summarization model on each single-document to alleviate the computational complexity issue that occurs while training neural summarization models in multiple documents (i.e., long sequences) at once. Experimental results on the Document Understanding Conferences (DUC) datasets show that our proposed approach sets a new state-of-the-art result in terms of various evaluation metrics.