Matthew Richardson


pdf bib
RAT-SQL: Relation-Aware Schema Encoding and Linking for Text-to-SQL Parsers
Bailin Wang | Richard Shin | Xiaodong Liu | Oleksandr Polozov | Matthew Richardson
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

When translating natural language questions into SQL queries to answer questions from a database, contemporary semantic parsing models struggle to generalize to unseen database schemas. The generalization challenge lies in (a) encoding the database relations in an accessible way for the semantic parser, and (b) modeling alignment between database columns and their mentions in a given query. We present a unified framework, based on the relation-aware self-attention mechanism, to address schema encoding, schema linking, and feature representation within a text-to-SQL encoder. On the challenging Spider dataset this framework boosts the exact match accuracy to 57.2%, surpassing its best counterparts by 8.7% absolute improvement. Further augmented with BERT, it achieves the new state-of-the-art performance of 65.6% on the Spider leaderboard. In addition, we observe qualitative improvements in the model’s understanding of schema linking and alignment. Our implementation will be open-sourced at


pdf bib
The Value of Semantic Parse Labeling for Knowledge Base Question Answering
Wen-tau Yih | Matthew Richardson | Chris Meek | Ming-Wei Chang | Jina Suh
Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)


pdf bib
Learning Answer-Entailing Structures for Machine Comprehension
Mrinmaya Sachan | Kumar Dubey | Eric Xing | Matthew Richardson
Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)


pdf bib
MCTest: A Challenge Dataset for the Open-Domain Machine Comprehension of Text
Matthew Richardson | Christopher J.C. Burges | Erin Renshaw
Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing