Matthew Peters


pdf bib
Learning from Task Descriptions
Orion Weller | Nicholas Lourie | Matt Gardner | Matthew Peters
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

Typically, machine learning systems solve new tasks by training on thousands of examples. In contrast, humans can solve new tasks by reading some instructions, with perhaps an example or two. To take a step toward closing this gap, we introduce a framework for developing NLP systems that solve new tasks after reading their descriptions, synthesizing prior work in this area. We instantiate this frame- work with a new English language dataset, ZEST, structured for task-oriented evaluation on unseen tasks. Formulating task descriptions as questions, we ensure each is general enough to apply to many possible inputs, thus comprehensively evaluating a model’s ability to solve each task. Moreover, the dataset’s structure tests specific types of systematic generalization. We find that the state-of-the-art T5 model achieves a score of 12% on ZEST, leaving a significant challenge for NLP researchers.


pdf bib
Deep Contextualized Word Representations
Matthew Peters | Mark Neumann | Mohit Iyyer | Matt Gardner | Christopher Clark | Kenton Lee | Luke Zettlemoyer
Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers)

We introduce a new type of deep contextualized word representation that models both (1) complex characteristics of word use (e.g., syntax and semantics), and (2) how these uses vary across linguistic contexts (i.e., to model polysemy). Our word vectors are learned functions of the internal states of a deep bidirectional language model (biLM), which is pre-trained on a large text corpus. We show that these representations can be easily added to existing models and significantly improve the state of the art across six challenging NLP problems, including question answering, textual entailment and sentiment analysis. We also present an analysis showing that exposing the deep internals of the pre-trained network is crucial, allowing downstream models to mix different types of semi-supervision signals.

pdf bib
Construction of the Literature Graph in Semantic Scholar
Waleed Ammar | Dirk Groeneveld | Chandra Bhagavatula | Iz Beltagy | Miles Crawford | Doug Downey | Jason Dunkelberger | Ahmed Elgohary | Sergey Feldman | Vu Ha | Rodney Kinney | Sebastian Kohlmeier | Kyle Lo | Tyler Murray | Hsu-Han Ooi | Matthew Peters | Joanna Power | Sam Skjonsberg | Lucy Wang | Chris Wilhelm | Zheng Yuan | Madeleine van Zuylen | Oren Etzioni
Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 3 (Industry Papers)

We describe a deployed scalable system for organizing published scientific literature into a heterogeneous graph to facilitate algorithmic manipulation and discovery. The resulting literature graph consists of more than 280M nodes, representing papers, authors, entities and various interactions between them (e.g., authorships, citations, entity mentions). We reduce literature graph construction into familiar NLP tasks (e.g., entity extraction and linking), point out research challenges due to differences from standard formulations of these tasks, and report empirical results for each task. The methods described in this paper are used to enable semantic features in

pdf bib
Dissecting Contextual Word Embeddings: Architecture and Representation
Matthew Peters | Mark Neumann | Luke Zettlemoyer | Wen-tau Yih
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing

Contextual word representations derived from pre-trained bidirectional language models (biLMs) have recently been shown to provide significant improvements to the state of the art for a wide range of NLP tasks. However, many questions remain as to how and why these models are so effective. In this paper, we present a detailed empirical study of how the choice of neural architecture (e.g. LSTM, CNN, or self attention) influences both end task accuracy and qualitative properties of the representations that are learned. We show there is a tradeoff between speed and accuracy, but all architectures learn high quality contextual representations that outperform word embeddings for four challenging NLP tasks. Additionally, all architectures learn representations that vary with network depth, from exclusively morphological based at the word embedding layer through local syntax based in the lower contextual layers to longer range semantics such coreference at the upper layers. Together, these results suggest that unsupervised biLMs, independent of architecture, are learning much more about the structure of language than previously appreciated.

pdf bib
Extending a Parser to Distant Domains Using a Few Dozen Partially Annotated Examples
Vidur Joshi | Matthew Peters | Mark Hopkins
Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

We revisit domain adaptation for parsers in the neural era. First we show that recent advances in word representations greatly diminish the need for domain adaptation when the target domain is syntactically similar to the source domain. As evidence, we train a parser on the Wall Street Journal alone that achieves over 90% F1 on the Brown corpus. For more syntactically distant domains, we provide a simple way to adapt a parser using only dozens of partial annotations. For instance, we increase the percentage of error-free geometry-domain parses in a held-out set from 45% to 73% using approximately five dozen training examples. In the process, we demonstrate a new state-of-the-art single model result on the Wall Street Journal test set of 94.3%. This is an absolute increase of 1.7% over the previous state-of-the-art of 92.6%.

pdf bib
AllenNLP: A Deep Semantic Natural Language Processing Platform
Matt Gardner | Joel Grus | Mark Neumann | Oyvind Tafjord | Pradeep Dasigi | Nelson F. Liu | Matthew Peters | Michael Schmitz | Luke Zettlemoyer
Proceedings of Workshop for NLP Open Source Software (NLP-OSS)

Modern natural language processing (NLP) research requires writing code. Ideally this code would provide a precise definition of the approach, easy repeatability of results, and a basis for extending the research. However, many research codebases bury high-level parameters under implementation details, are challenging to run and debug, and are difficult enough to extend that they are more likely to be rewritten. This paper describes AllenNLP, a library for applying deep learning methods to NLP research that addresses these issues with easy-to-use command-line tools, declarative configuration-driven experiments, and modular NLP abstractions. AllenNLP has already increased the rate of research experimentation and the sharing of NLP components at the Allen Institute for Artificial Intelligence, and we are working to have the same impact across the field.


pdf bib
Semi-supervised sequence tagging with bidirectional language models
Matthew Peters | Waleed Ammar | Chandra Bhagavatula | Russell Power
Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Pre-trained word embeddings learned from unlabeled text have become a standard component of neural network architectures for NLP tasks. However, in most cases, the recurrent network that operates on word-level representations to produce context sensitive representations is trained on relatively little labeled data. In this paper, we demonstrate a general semi-supervised approach for adding pretrained context embeddings from bidirectional language models to NLP systems and apply it to sequence labeling tasks. We evaluate our model on two standard datasets for named entity recognition (NER) and chunking, and in both cases achieve state of the art results, surpassing previous systems that use other forms of transfer or joint learning with additional labeled data and task specific gazetteers.

pdf bib
The AI2 system at SemEval-2017 Task 10 (ScienceIE): semi-supervised end-to-end entity and relation extraction
Waleed Ammar | Matthew Peters | Chandra Bhagavatula | Russell Power
Proceedings of the 11th International Workshop on Semantic Evaluation (SemEval-2017)

This paper describes our submission for the ScienceIE shared task (SemEval- 2017 Task 10) on entity and relation extraction from scientific papers. Our model is based on the end-to-end relation extraction model of Miwa and Bansal (2016) with several enhancements such as semi-supervised learning via neural language models, character-level encoding, gazetteers extracted from existing knowledge bases, and model ensembles. Our official submission ranked first in end-to-end entity and relation extraction (scenario 1), and second in the relation-only extraction (scenario 3).