Matej Martinc


pdf bib
Discovery Team at SemEval-2020 Task 1: Context-sensitive Embeddings Not Always Better than Static for Semantic Change Detection
Matej Martinc | Syrielle Montariol | Elaine Zosa | Lidia Pivovarova
Proceedings of the Fourteenth Workshop on Semantic Evaluation

This paper describes the approaches used by the Discovery Team to solve SemEval-2020 Task 1 - Unsupervised Lexical Semantic Change Detection. The proposed method is based on clustering of BERT contextual embeddings, followed by a comparison of cluster distributions across time. The best results were obtained by an ensemble of this method and static Word2Vec embeddings. According to the official results, our approach proved the best for Latin in Subtask 2.

pdf bib
Leveraging Contextual Embeddings for Detecting Diachronic Semantic Shift
Matej Martinc | Petra Kralj Novak | Senja Pollak
Proceedings of the 12th Language Resources and Evaluation Conference

We propose a new method that leverages contextual embeddings for the task of diachronic semantic shift detection by generating time specific word representations from BERT embeddings. The results of our experiments in the domain specific LiverpoolFC corpus suggest that the proposed method has performance comparable to the current state-of-the-art without requiring any time consuming domain adaptation on large corpora. The results on the newly created Brexit news corpus suggest that the method can be successfully used for the detection of a short-term yearly semantic shift. And lastly, the model also shows promising results in a multilingual settings, where the task was to detect differences and similarities between diachronic semantic shifts in different languages.

pdf bib
Mining Semantic Relations from Comparable Corpora through Intersections of Word Embeddings
Špela Vintar | Larisa Grčić Simeunović | Matej Martinc | Senja Pollak | Uroš Stepišnik
Proceedings of the 13th Workshop on Building and Using Comparable Corpora

We report an experiment aimed at extracting words expressing a specific semantic relation using intersections of word embeddings. In a multilingual frame-based domain model, specific features of a concept are typically described through a set of non-arbitrary semantic relations. In karstology, our domain of choice which we are exploring though a comparable corpus in English and Croatian, karst phenomena such as landforms are usually described through their FORM, LOCATION, CAUSE, FUNCTION and COMPOSITION. We propose an approach to mine words pertaining to each of these relations by using a small number of seed adjectives, for which we retrieve closest words using word embeddings and then use intersections of these neighbourhoods to refine our search. Such cross-language expansion of semantically-rich vocabulary is a valuable aid in improving the coverage of a multilingual knowledge base, but also in exploring differences between languages in their respective conceptualisations of the domain.


pdf bib
Embeddia at SemEval-2019 Task 6: Detecting Hate with Neural Network and Transfer Learning Approaches
Andraž Pelicon | Matej Martinc | Petra Kralj Novak
Proceedings of the 13th International Workshop on Semantic Evaluation

SemEval 2019 Task 6 was OffensEval: Identifying and Categorizing Offensive Language in Social Media. The task was further divided into three sub-tasks: offensive language identification, automatic categorization of offense types, and offense target identification. In this paper, we present the approaches used by the Embeddia team, who qualified as fourth, eighteenth and fifth on the tree sub-tasks. A different model was trained for each sub-task. For the first sub-task, we used a BERT model fine-tuned on the OLID dataset, while for the second and third tasks we developed a custom neural network architecture which combines bag-of-words features and automatically generated sequence-based features. Our results show that combining automatically and manually crafted features fed into a neural architecture outperform transfer learning approach on more unbalanced datasets.


pdf bib
Reusable workflows for gender prediction
Matej Martinc | Senja Pollak
Proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC 2018)

pdf bib
Er ... well, it matters, right? On the role of data representations in spoken language dependency parsing
Kaja Dobrovoljc | Matej Martinc
Proceedings of the Second Workshop on Universal Dependencies (UDW 2018)

Despite the significant improvement of data-driven dependency parsing systems in recent years, they still achieve a considerably lower performance in parsing spoken language data in comparison to written data. On the example of Spoken Slovenian Treebank, the first spoken data treebank using the UD annotation scheme, we investigate which speech-specific phenomena undermine parsing performance, through a series of training data and treebank modification experiments using two distinct state-of-the-art parsing systems. Our results show that utterance segmentation is the most prominent cause of low parsing performance, both in parsing raw and pre-segmented transcriptions. In addition to shorter utterances, both parsers perform better on normalized transcriptions including basic markers of prosody and excluding disfluencies, discourse markers and fillers. On the other hand, the effects of written training data addition and speech-specific dependency representations largely depend on the parsing system selected.