Maria Kunilovskaya


2020

pdf bib
Lexicogrammatic translationese across two targets and competence levels
Maria Kunilovskaya | Ekaterina Lapshinova-Koltunski
Proceedings of the 12th Language Resources and Evaluation Conference

This research employs genre-comparable data from a number of parallel and comparable corpora to explore the specificity of translations from English into German and Russian produced by students and professional translators. We introduce an elaborate set of human-interpretable lexicogrammatic translationese indicators and calculate the amount of translationese manifested in the data for each target language and translation variety. By placing translations into the same feature space as their sources and the genre-comparable non-translated reference texts in the target language, we observe two separate translationese effects: a shift of translations into the gap between the two languages and a shift away from either language. These trends are linked to the features that contribute to each of the effects. Finally, we compare the translation varieties and find out that the professionalism levels seem to have some correlation with the amount and types of translationese detected, while each language pair demonstrates a specific socio-linguistically determined combination of the translationese effects.

2019

pdf bib
Translationese Features as Indicators of Quality in English-Russian Human Translation
Maria Kunilovskaya | Ekaterina Lapshinova-Koltunski
Proceedings of the Human-Informed Translation and Interpreting Technology Workshop (HiT-IT 2019)

We use a range of morpho-syntactic features inspired by research in register studies (e.g. Biber, 1995; Neumann, 2013) and translation studies (e.g. Ilisei et al., 2010; Zanettin, 2013; Kunilovskaya and Kutuzov, 2018) to reveal the association between translationese and human translation quality. Translationese is understood as any statistical deviations of translations from non-translations (Baker, 1993) and is assumed to affect the fluency of translations, rendering them foreign-sounding and clumsy of wording and structure. This connection is often posited or implied in the studies of translationese or translational varieties (De Sutter et al., 2017), but is rarely directly tested. Our 45 features include frequencies of selected morphological forms and categories, some types of syntactic structures and relations, as well as several overall text measures extracted from Universal Dependencies annotation. The research corpora include English-to-Russian professional and student translations of informational or argumentative newspaper texts and a comparable corpus of non-translated Russian. Our results indicate lack of direct association between translationese and quality in our data: while our features distinguish translations and non-translations with the near perfect accuracy, the performance of the same algorithm on the quality classes barely exceeds the chance level.

pdf bib
Towards Functionally Similar Corpus Resources for Translation
Maria Kunilovskaya | Serge Sharoff
Proceedings of the International Conference on Recent Advances in Natural Language Processing (RANLP 2019)

The paper describes a computational approach to produce functionally comparable monolingual corpus resources for translation studies and contrastive analysis. We exploit a text-external approach, based on a set of Functional Text Dimensions to model text functions, so that each text can be represented as a vector in a multidimensional space of text functions. These vectors can be used to find reasonably homogeneous subsets of functionally similar texts across different corpora. Our models for predicting text functions are based on recurrent neural networks and traditional feature-based machine learning approaches. In addition to using the categories of the British National Corpus as our test case, we investigated the functional comparability of the English parts from the two parallel corpora: CroCo (English-German) and RusLTC (English-Russian) and applied our models to define functionally similar clusters in them. Our results show that the Functional Text Dimensions provide a useful description for text categories, while allowing a more flexible representation for texts with hybrid functions.

2017

pdf bib
Universal Dependencies-based syntactic features in detecting human translation varieties
Maria Kunilovskaya | Andrey Kutuzov
Proceedings of the 16th International Workshop on Treebanks and Linguistic Theories