Maria Becker


pdf bib
Implicit Knowledge in Argumentative Texts: An Annotated Corpus
Maria Becker | Katharina Korfhage | Anette Frank
Proceedings of the 12th Language Resources and Evaluation Conference

When speaking or writing, people omit information that seems clear and evident, such that only part of the message is expressed in words. Especially in argumentative texts it is very common that (important) parts of the argument are implied and omitted. We hypothesize that for argument analysis it will be beneficial to reconstruct this implied information. As a starting point for filling knowledge gaps, we build a corpus consisting of high-quality human annotations of missing and implied information in argumentative texts. To learn more about the characteristics of both the argumentative texts and the added information, we further annotate the data with semantic clause types and commonsense knowledge relations. The outcome of our work is a carefully designed and richly annotated dataset, for which we then provide an in-depth analysis by investigating characteristic distributions and correlations of the assigned labels. We reveal interesting patterns and intersections between the annotation categories and properties of our dataset, which enable insights into the characteristics of both argumentative texts and implicit knowledge in terms of structural features and semantic information. The results of our analysis can help to assist automated argument analysis and can guide the process of revealing implicit information in argumentative texts automatically.


pdf bib
Assessing the Difficulty of Classifying ConceptNet Relations in a Multi-Label Classification Setting
Maria Becker | Michael Staniek | Vivi Nastase | Anette Frank
RELATIONS - Workshop on meaning relations between phrases and sentences

Commonsense knowledge relations are crucial for advanced NLU tasks. We examine the learnability of such relations as represented in ConceptNet, taking into account their specific properties, which can make relation classification difficult: a given concept pair can be linked by multiple relation types, and relations can have multi-word arguments of diverse semantic types. We explore a neural open world multi-label classification approach that focuses on the evaluation of classification accuracy for individual relations. Based on an in-depth study of the specific properties of the ConceptNet resource, we investigate the impact of different relation representations and model variations. Our analysis reveals that the complexity of argument types and relation ambiguity are the most important challenges to address. We design a customized evaluation method to address the incompleteness of the resource that can be expanded in future work.


pdf bib
Classifying Semantic Clause Types: Modeling Context and Genre Characteristics with Recurrent Neural Networks and Attention
Maria Becker | Michael Staniek | Vivi Nastase | Alexis Palmer | Anette Frank
Proceedings of the 6th Joint Conference on Lexical and Computational Semantics (*SEM 2017)

Detecting aspectual properties of clauses in the form of situation entity types has been shown to depend on a combination of syntactic-semantic and contextual features. We explore this task in a deep-learning framework, where tuned word representations capture lexical, syntactic and semantic features. We introduce an attention mechanism that pinpoints relevant context not only for the current instance, but also for the larger context. Apart from implicitly capturing task relevant features, the advantage of our neural model is that it avoids the need to reproduce linguistic features for other languages and is thus more easily transferable. We present experiments for English and German that achieve competitive performance. We present a novel take on modeling and exploiting genre information and showcase the adaptation of our system from one language to another.


pdf bib
Argumentative texts and clause types
Maria Becker | Alexis Palmer | Anette Frank
Proceedings of the Third Workshop on Argument Mining (ArgMining2016)