Margrit Betke


2020

pdf bib
Multi-Label and Multilingual News Framing Analysis
Afra Feyza Akyürek | Lei Guo | Randa Elanwar | Prakash Ishwar | Margrit Betke | Derry Tanti Wijaya
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

News framing refers to the practice in which aspects of specific issues are highlighted in the news to promote a particular interpretation. In NLP, although recent works have studied framing in English news, few have studied how the analysis can be extended to other languages and in a multi-label setting. In this work, we explore multilingual transfer learning to detect multiple frames from just the news headline in a genuinely low-resource context where there are few/no frame annotations in the target language. We propose a novel method that can leverage elementary resources consisting of a dictionary and few annotations to detect frames in the target language. Our method performs comparably or better than translating the entire target language headline to the source language for which we have annotated data. This work opens up an exciting new capability of scaling up frame analysis to many languages, even those without existing translation technologies. Lastly, we apply our method to detect frames on the issue of U.S. gun violence in multiple languages and obtain exciting insights on the relationship between different frames of the same problem across different countries with different languages.

2019

pdf bib
Detecting Frames in News Headlines and Its Application to Analyzing News Framing Trends Surrounding U.S. Gun Violence
Siyi Liu | Lei Guo | Kate Mays | Margrit Betke | Derry Tanti Wijaya
Proceedings of the 23rd Conference on Computational Natural Language Learning (CoNLL)

Different news articles about the same topic often offer a variety of perspectives: an article written about gun violence might emphasize gun control, while another might promote 2nd Amendment rights, and yet a third might focus on mental health issues. In communication research, these different perspectives are known as “frames”, which, when used in news media will influence the opinion of their readers in multiple ways. In this paper, we present a method for effectively detecting frames in news headlines. Our training and performance evaluation is based on a new dataset of news headlines related to the issue of gun violence in the United States. This Gun Violence Frame Corpus (GVFC) was curated and annotated by journalism and communication experts. Our proposed approach sets a new state-of-the-art performance for multiclass news frame detection, significantly outperforming a recent baseline by 35.9% absolute difference in accuracy. We apply our frame detection approach in a large scale study of 88k news headlines about the coverage of gun violence in the U.S. between 2016 and 2018.