Margaret Li


2020

pdf bib
Don’t Say That! Making Inconsistent Dialogue Unlikely with Unlikelihood Training
Margaret Li | Stephen Roller | Ilia Kulikov | Sean Welleck | Y-Lan Boureau | Kyunghyun Cho | Jason Weston
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

Generative dialogue models currently suffer from a number of problems which standard maximum likelihood training does not address. They tend to produce generations that (i) rely too much on copying from the context, (ii) contain repetitions within utterances, (iii) overuse frequent words, and (iv) at a deeper level, contain logical flaws.In this work we show how all of these problems can be addressed by extending the recently introduced unlikelihood loss (Welleck et al., 2019) to these cases. We show that appropriate loss functions which regularize generated outputs to match human distributions are effective for the first three issues. For the last important general issue, we show applying unlikelihood to collected data of what a model should not do is effective for improving logical consistency, potentially paving the way to generative models with greater reasoning ability. We demonstrate the efficacy of our approach across several dialogue tasks.

2019

pdf bib
Towards Empathetic Open-domain Conversation Models: A New Benchmark and Dataset
Hannah Rashkin | Eric Michael Smith | Margaret Li | Y-Lan Boureau
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

One challenge for dialogue agents is recognizing feelings in the conversation partner and replying accordingly, a key communicative skill. While it is straightforward for humans to recognize and acknowledge others’ feelings in a conversation, this is a significant challenge for AI systems due to the paucity of suitable publicly-available datasets for training and evaluation. This work proposes a new benchmark for empathetic dialogue generation and EmpatheticDialogues, a novel dataset of 25k conversations grounded in emotional situations. Our experiments indicate that dialogue models that use our dataset are perceived to be more empathetic by human evaluators, compared to models merely trained on large-scale Internet conversation data. We also present empirical comparisons of dialogue model adaptations for empathetic responding, leveraging existing models or datasets without requiring lengthy re-training of the full model.