Marco Saerens


pdf bib
Combining Manual and Automatic Prosodic Annotation for Expressive Speech Synthesis
Sandrine Brognaux | Thomas François | Marco Saerens
Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC'16)

Text-to-speech has long been centered on the production of an intelligible message of good quality. More recently, interest has shifted to the generation of more natural and expressive speech. A major issue of existing approaches is that they usually rely on a manual annotation in expressive styles, which tends to be rather subjective. A typical related issue is that the annotation is strongly influenced ― and possibly biased ― by the semantic content of the text (e.g. a shot or a fault may incite the annotator to tag that sequence as expressing a high degree of excitation, independently of its acoustic realization). This paper investigates the assumption that human annotation of basketball commentaries in excitation levels can be automatically improved on the basis of acoustic features. It presents two techniques for label correction exploiting a Gaussian mixture and a proportional-odds logistic regression. The automatically re-annotated corpus is then used to train HMM-based expressive speech synthesizers, the performance of which is assessed through subjective evaluations. The results indicate that the automatic correction of the annotation with Gaussian mixture helps to synthesize more contrasted excitation levels, while preserving naturalness.


pdf bib
Centering Similarity Measures to Reduce Hubs
Ikumi Suzuki | Kazuo Hara | Masashi Shimbo | Marco Saerens | Kenji Fukumizu
Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing

pdf bib
A Graph-Based Approach to Skill Extraction from Text
Ilkka Kivimäki | Alexander Panchenko | Adrien Dessy | Dries Verdegem | Pascal Francq | Hugues Bersini | Marco Saerens
Proceedings of TextGraphs-8 Graph-based Methods for Natural Language Processing