Marco Damonte


2020

pdf bib
The Role of Reentrancies in Abstract Meaning Representation Parsing
Marco Damonte | Ida Szubert | Shay B. Cohen | Mark Steedman
Findings of the Association for Computational Linguistics: EMNLP 2020

Abstract Meaning Representation (AMR) parsing aims at converting sentences into AMR representations. These are graphs and not trees because AMR supports reentrancies (nodes with more than one parent). Following previous findings on the importance of reen- trancies for AMR, we empirically find and discuss several linguistic phenomena respon- sible for reentrancies in AMR, some of which have not received attention before. We cate- gorize the types of errors AMR parsers make with respect to reentrancies. Furthermore, we find that correcting these errors provides an in- crease of up to 5% Smatch in parsing perfor- mance and 20% in reentrancy prediction

2019

pdf bib
Structural Neural Encoders for AMR-to-text Generation
Marco Damonte | Shay B. Cohen
Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)

AMR-to-text generation is a problem recently introduced to the NLP community, in which the goal is to generate sentences from Abstract Meaning Representation (AMR) graphs. Sequence-to-sequence models can be used to this end by converting the AMR graphs to strings. Approaching the problem while working directly with graphs requires the use of graph-to-sequence models that encode the AMR graph into a vector representation. Such encoding has been shown to be beneficial in the past, and unlike sequential encoding, it allows us to explicitly capture reentrant structures in the AMR graphs. We investigate the extent to which reentrancies (nodes with multiple parents) have an impact on AMR-to-text generation by comparing graph encoders to tree encoders, where reentrancies are not preserved. We show that improvements in the treatment of reentrancies and long-range dependencies contribute to higher overall scores for graph encoders. Our best model achieves 24.40 BLEU on LDC2015E86, outperforming the state of the art by 1.1 points and 24.54 BLEU on LDC2017T10, outperforming the state of the art by 1.24 points.

pdf bib
Practical Semantic Parsing for Spoken Language Understanding
Marco Damonte | Rahul Goel | Tagyoung Chung
Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Industry Papers)

Executable semantic parsing is the task of converting natural language utterances into logical forms that can be directly used as queries to get a response. We build a transfer learning framework for executable semantic parsing. We show that the framework is effective for Question Answering (Q&A) as well as for Spoken Language Understanding (SLU). We further investigate the case where a parser on a new domain can be learned by exploiting data on other domains, either via multi-task learning between the target domain and an auxiliary domain or via pre-training on the auxiliary domain and fine-tuning on the target domain. With either flavor of transfer learning, we are able to improve performance on most domains; we experiment with public data sets such as Overnight and NLmaps as well as with commercial SLU data. The experiments carried out on data sets that are different in nature show how executable semantic parsing can unify different areas of NLP such as Q&A and SLU.

2018

pdf bib
Abstract Meaning Representation for Paraphrase Detection
Fuad Issa | Marco Damonte | Shay B. Cohen | Xiaohui Yan | Yi Chang
Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers)

Abstract Meaning Representation (AMR) parsing aims at abstracting away from the syntactic realization of a sentence, and denote only its meaning in a canonical form. As such, it is ideal for paraphrase detection, a problem in which one is required to specify whether two sentences have the same meaning. We show that naïve use of AMR in paraphrase detection is not necessarily useful, and turn to describe a technique based on latent semantic analysis in combination with AMR parsing that significantly advances state-of-the-art results in paraphrase detection for the Microsoft Research Paraphrase Corpus. Our best results in the transductive setting are 86.6% for accuracy and 90.0% for F1 measure.

pdf bib
Cross-Lingual Abstract Meaning Representation Parsing
Marco Damonte | Shay B. Cohen
Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers)

Abstract Meaning Representation (AMR) research has mostly focused on English. We show that it is possible to use AMR annotations for English as a semantic representation for sentences written in other languages. We exploit an AMR parser for English and parallel corpora to learn AMR parsers for Italian, Spanish, German and Chinese. Qualitative analysis show that the new parsers overcome structural differences between the languages. We further propose a method to evaluate the parsers that does not require gold standard data in the target languages. This method highly correlates with the gold standard evaluation, obtaining a Pearson correlation coefficient of 0.95.

2017

pdf bib
An Incremental Parser for Abstract Meaning Representation
Marco Damonte | Shay B. Cohen | Giorgio Satta
Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 1, Long Papers

Abstract Meaning Representation (AMR) is a semantic representation for natural language that embeds annotations related to traditional tasks such as named entity recognition, semantic role labeling, word sense disambiguation and co-reference resolution. We describe a transition-based parser for AMR that parses sentences left-to-right, in linear time. We further propose a test-suite that assesses specific subtasks that are helpful in comparing AMR parsers, and show that our parser is competitive with the state of the art on the LDC2015E86 dataset and that it outperforms state-of-the-art parsers for recovering named entities and handling polarity.

pdf bib
The SUMMA Platform Prototype
Renars Liepins | Ulrich Germann | Guntis Barzdins | Alexandra Birch | Steve Renals | Susanne Weber | Peggy van der Kreeft | Hervé Bourlard | João Prieto | Ondřej Klejch | Peter Bell | Alexandros Lazaridis | Alfonso Mendes | Sebastian Riedel | Mariana S. C. Almeida | Pedro Balage | Shay B. Cohen | Tomasz Dwojak | Philip N. Garner | Andreas Giefer | Marcin Junczys-Dowmunt | Hina Imran | David Nogueira | Ahmed Ali | Sebastião Miranda | Andrei Popescu-Belis | Lesly Miculicich Werlen | Nikos Papasarantopoulos | Abiola Obamuyide | Clive Jones | Fahim Dalvi | Andreas Vlachos | Yang Wang | Sibo Tong | Rico Sennrich | Nikolaos Pappas | Shashi Narayan | Marco Damonte | Nadir Durrani | Sameer Khurana | Ahmed Abdelali | Hassan Sajjad | Stephan Vogel | David Sheppey | Chris Hernon | Jeff Mitchell
Proceedings of the Software Demonstrations of the 15th Conference of the European Chapter of the Association for Computational Linguistics

We present the first prototype of the SUMMA Platform: an integrated platform for multilingual media monitoring. The platform contains a rich suite of low-level and high-level natural language processing technologies: automatic speech recognition of broadcast media, machine translation, automated tagging and classification of named entities, semantic parsing to detect relationships between entities, and automatic construction / augmentation of factual knowledge bases. Implemented on the Docker platform, it can easily be deployed, customised, and scaled to large volumes of incoming media streams.