Marcello Federico


2020

pdf bib
Proceedings of 1st Workshop on Post-Editing in Modern-Day Translation
John E. Ortega | Marcello Federico | Constantin Orasan | Maja Popovic
Proceedings of 1st Workshop on Post-Editing in Modern-Day Translation

pdf bib
Proceedings of the 17th International Conference on Spoken Language Translation
Marcello Federico | Alex Waibel | Kevin Knight | Satoshi Nakamura | Hermann Ney | Jan Niehues | Sebastian Stüker | Dekai Wu | Joseph Mariani | Francois Yvon
Proceedings of the 17th International Conference on Spoken Language Translation

pdf bib
FINDINGS OF THE IWSLT 2020 EVALUATION CAMPAIGN
Ebrahim Ansari | Amittai Axelrod | Nguyen Bach | Ondřej Bojar | Roldano Cattoni | Fahim Dalvi | Nadir Durrani | Marcello Federico | Christian Federmann | Jiatao Gu | Fei Huang | Kevin Knight | Xutai Ma | Ajay Nagesh | Matteo Negri | Jan Niehues | Juan Pino | Elizabeth Salesky | Xing Shi | Sebastian Stüker | Marco Turchi | Alexander Waibel | Changhan Wang
Proceedings of the 17th International Conference on Spoken Language Translation

The evaluation campaign of the International Conference on Spoken Language Translation (IWSLT 2020) featured this year six challenge tracks: (i) Simultaneous speech translation, (ii) Video speech translation, (iii) Offline speech translation, (iv) Conversational speech translation, (v) Open domain translation, and (vi) Non-native speech translation. A total of teams participated in at least one of the tracks. This paper introduces each track’s goal, data and evaluation metrics, and reports the results of the received submissions.

pdf bib
From Speech-to-Speech Translation to Automatic Dubbing
Marcello Federico | Robert Enyedi | Roberto Barra-Chicote | Ritwik Giri | Umut Isik | Arvindh Krishnaswamy | Hassan Sawaf
Proceedings of the 17th International Conference on Spoken Language Translation

We present enhancements to a speech-to-speech translation pipeline in order to perform automatic dubbing. Our architecture features neural machine translation generating output of preferred length, prosodic alignment of the translation with the original speech segments, neural text-to-speech with fine tuning of the duration of each utterance, and, finally, audio rendering to enriches text-to-speech output with background noise and reverberation extracted from the original audio. We report and discuss results of a first subjective evaluation of automatic dubbing of excerpts of TED Talks from English into Italian, which measures the perceived naturalness of automatic dubbing and the relative importance of each proposed enhancement.

pdf bib
Joint Translation and Unit Conversion for End-to-end Localization
Georgiana Dinu | Prashant Mathur | Marcello Federico | Stanislas Lauly | Yaser Al-Onaizan
Proceedings of the 17th International Conference on Spoken Language Translation

A variety of natural language tasks require processing of textual data which contains a mix of natural language and formal languages such as mathematical expressions. In this paper, we take unit conversions as an example and propose a data augmentation technique which lead to models learning both translation and conversion tasks as well as how to adequately switch between them for end-to-end localization.

pdf bib
TICO-19: the Translation Initiative for COvid-19
Antonios Anastasopoulos | Alessandro Cattelan | Zi-Yi Dou | Marcello Federico | Christian Federmann | Dmitriy Genzel | Franscisco Guzmán | Junjie Hu | Macduff Hughes | Philipp Koehn | Rosie Lazar | Will Lewis | Graham Neubig | Mengmeng Niu | Alp Öktem | Eric Paquin | Grace Tang | Sylwia Tur
Proceedings of the 1st Workshop on NLP for COVID-19 (Part 2) at EMNLP 2020

The COVID-19 pandemic is the worst pandemic to strike the world in over a century. Crucial to stemming the tide of the SARS-CoV-2 virus is communicating to vulnerable populations the means by which they can protect themselves. To this end, the collaborators forming the Translation Initiative for COvid-19 (TICO-19) have made test and development data available to AI and MT researchers in 35 different languages in order to foster the development of tools and resources for improving access to information about COVID-19 in these languages. In addition to 9 high-resourced, ”pivot” languages, the team is targeting 26 lesser resourced languages, in particular languages of Africa, South Asia and South-East Asia, whose populations may be the most vulnerable to the spread of the virus. The same data is translated into all of the languages represented, meaning that testing or development can be done for any pairing of languages in the set. Further, the team is converting the test and development data into translation memories (TMXs) that can be used by localizers from and to any of the languages.

2019

pdf bib
On the Importance of Word Boundaries in Character-level Neural Machine Translation
Duygu Ataman | Orhan Firat | Mattia A. Di Gangi | Marcello Federico | Alexandra Birch
Proceedings of the 3rd Workshop on Neural Generation and Translation

Neural Machine Translation (NMT) models generally perform translation using a fixed-size lexical vocabulary, which is an important bottleneck on their generalization capability and overall translation quality. The standard approach to overcome this limitation is to segment words into subword units, typically using some external tools with arbitrary heuristics, resulting in vocabulary units not optimized for the translation task. Recent studies have shown that the same approach can be extended to perform NMT directly at the level of characters, which can deliver translation accuracy on-par with subword-based models, on the other hand, this requires relatively deeper networks. In this paper, we propose a more computationally-efficient solution for character-level NMT which implements a hierarchical decoding architecture where translations are subsequently generated at the level of words and characters. We evaluate different methods for open-vocabulary NMT in the machine translation task from English into five languages with distinct morphological typology, and show that the hierarchical decoding model can reach higher translation accuracy than the subword-level NMT model using significantly fewer parameters, while demonstrating better capacity in learning longer-distance contextual and grammatical dependencies than the standard character-level NMT model.

pdf bib
Training Neural Machine Translation to Apply Terminology Constraints
Georgiana Dinu | Prashant Mathur | Marcello Federico | Yaser Al-Onaizan
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

This paper proposes a novel method to inject custom terminology into neural machine translation at run time. Previous works have mainly proposed modifications to the decoding algorithm in order to constrain the output to include run-time-provided target terms. While being effective, these constrained decoding methods add, however, significant computational overhead to the inference step, and, as we show in this paper, can be brittle when tested in realistic conditions. In this paper we approach the problem by training a neural MT system to learn how to use custom terminology when provided with the input. Comparative experiments show that our method is not only more effective than a state-of-the-art implementation of constrained decoding, but is also as fast as constraint-free decoding.

2018

pdf bib
A Comparison of Transformer and Recurrent Neural Networks on Multilingual Neural Machine Translation
Surafel Melaku Lakew | Mauro Cettolo | Marcello Federico
Proceedings of the 27th International Conference on Computational Linguistics

Recently, neural machine translation (NMT) has been extended to multilinguality, that is to handle more than one translation direction with a single system. Multilingual NMT showed competitive performance against pure bilingual systems. Notably, in low-resource settings, it proved to work effectively and efficiently, thanks to shared representation space that is forced across languages and induces a sort of transfer-learning. Furthermore, multilingual NMT enables so-called zero-shot inference across language pairs never seen at training time. Despite the increasing interest in this framework, an in-depth analysis of what a multilingual NMT model is capable of and what it is not is still missing. Motivated by this, our work (i) provides a quantitative and comparative analysis of the translations produced by bilingual, multilingual and zero-shot systems; (ii) investigates the translation quality of two of the currently dominant neural architectures in MT, which are the Recurrent and the Transformer ones; and (iii) quantitatively explores how the closeness between languages influences the zero-shot translation. Our analysis leverages multiple professional post-edits of automatic translations by several different systems and focuses both on automatic standard metrics (BLEU and TER) and on widely used error categories, which are lexical, morphology, and word order errors.

pdf bib
Compositional Representation of Morphologically-Rich Input for Neural Machine Translation
Duygu Ataman | Marcello Federico
Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)

Neural machine translation (NMT) models are typically trained with fixed-size input and output vocabularies, which creates an important bottleneck on their accuracy and generalization capability. As a solution, various studies proposed segmenting words into sub-word units and performing translation at the sub-lexical level. However, statistical word segmentation methods have recently shown to be prone to morphological errors, which can lead to inaccurate translations. In this paper, we propose to overcome this problem by replacing the source-language embedding layer of NMT with a bi-directional recurrent neural network that generates compositional representations of the input at any desired level of granularity. We test our approach in a low-resource setting with five languages from different morphological typologies, and under different composition assumptions. By training NMT to compose word representations from character n-grams, our approach consistently outperforms (from 1.71 to 2.48 BLEU points) NMT learning embeddings of statistically generated sub-word units.

pdf bib
An Evaluation of Two Vocabulary Reduction Methods for Neural Machine Translation
Duygu Ataman | Marcello Federico
Proceedings of the 13th Conference of the Association for Machine Translation in the Americas (Volume 1: Research Track)

pdf bib
Challenges in Adaptive Neural Machine Translation
Marcello Federico
Proceedings of the AMTA 2018 Workshop on Translation Quality Estimation and Automatic Post-Editing

pdf bib
Neural Machine Translation into Language Varieties
Surafel Melaku Lakew | Aliia Erofeeva | Marcello Federico
Proceedings of the Third Conference on Machine Translation: Research Papers

Both research and commercial machine translation have so far neglected the importance of properly handling the spelling, lexical and grammar divergences occurring among language varieties. Notable cases are standard national varieties such as Brazilian and European Portuguese, and Canadian and European French, which popular online machine translation services are not keeping distinct. We show that an evident side effect of modeling such varieties as unique classes is the generation of inconsistent translations. In this work, we investigate the problem of training neural machine translation from English to specific pairs of language varieties, assuming both labeled and unlabeled parallel texts, and low-resource conditions. We report experiments from English to two pairs of dialects, European-Brazilian Portuguese and European-Canadian French, and two pairs of standardized varieties, Croatian-Serbian and Indonesian-Malay. We show significant BLEU score improvements over baseline systems when translation into similar languages is learned as a multilingual task with shared representations.

2017

pdf bib
Neural vs. Phrase-Based Machine Translation in a Multi-Domain Scenario
M. Amin Farajian | Marco Turchi | Matteo Negri | Nicola Bertoldi | Marcello Federico
Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 2, Short Papers

State-of-the-art neural machine translation (NMT) systems are generally trained on specific domains by carefully selecting the training sets and applying proper domain adaptation techniques. In this paper we consider the real world scenario in which the target domain is not predefined, hence the system should be able to translate text from multiple domains. We compare the performance of a generic NMT system and phrase-based statistical machine translation (PBMT) system by training them on a generic parallel corpus composed of data from different domains. Our results on multi-domain English-French data show that, in these realistic conditions, PBMT outperforms its neural counterpart. This raises the question: is NMT ready for deployment as a generic/multi-purpose MT backbone in real-world settings?

pdf bib
Multi-Domain Neural Machine Translation through Unsupervised Adaptation
M. Amin Farajian | Marco Turchi | Matteo Negri | Marcello Federico
Proceedings of the Second Conference on Machine Translation

pdf bib
Guiding Neural Machine Translation Decoding with External Knowledge
Rajen Chatterjee | Matteo Negri | Marco Turchi | Marcello Federico | Lucia Specia | Frédéric Blain
Proceedings of the Second Conference on Machine Translation

pdf bib
FBK’s Participation to the English-to-German News Translation Task of WMT 2017
Mattia Antonino Di Gangi | Nicola Bertoldi | Marcello Federico
Proceedings of the Second Conference on Machine Translation

2016

pdf bib
WAGS: A Beautiful English-Italian Benchmark Supporting Word Alignment Evaluation on Rare Words
Luisa Bentivogli | Mauro Cettolo | M. Amin Farajian | Marcello Federico
Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC'16)

This paper presents WAGS (Word Alignment Gold Standard), a novel benchmark which allows extensive evaluation of WA tools on out-of-vocabulary (OOV) and rare words. WAGS is a subset of the Common Test section of the Europarl English-Italian parallel corpus, and is specifically tailored to OOV and rare words. WAGS is composed of 6,715 sentence pairs containing 11,958 occurrences of OOV and rare words up to frequency 15 in the Europarl Training set (5,080 English words and 6,878 Italian words), representing almost 3% of the whole text. Since WAGS is focused on OOV/rare words, manual alignments are provided for these words only, and not for the whole sentences. Two off-the-shelf word aligners have been evaluated on WAGS, and results have been compared to those obtained on an existing benchmark tailored to full text alignment. The results obtained confirm that WAGS is a valuable resource, which allows a statistically sound evaluation of WA systems’ performance on OOV and rare words, as well as extensive data analyses. WAGS is publicly released under a Creative Commons Attribution license.

pdf bib
Neural versus Phrase-Based Machine Translation Quality: a Case Study
Luisa Bentivogli | Arianna Bisazza | Mauro Cettolo | Marcello Federico
Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing

pdf bib
Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Tutorial Abstracts
Marcello Federico | Akiko Aizawa
Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Tutorial Abstracts

pdf bib
TMop: a Tool for Unsupervised Translation Memory Cleaning
Masoud Jalili Sabet | Matteo Negri | Marco Turchi | José G. C. de Souza | Marcello Federico
Proceedings of ACL-2016 System Demonstrations

pdf bib
Surveys: A Survey of Word Reordering in Statistical Machine Translation: Computational Models and Language Phenomena
Arianna Bisazza | Marcello Federico
Computational Linguistics, Volume 42, Issue 2 - June 2016

2015

pdf bib
MT Quality Estimation for Computer-assisted Translation: Does it Really Help?
Marco Turchi | Matteo Negri | Marcello Federico
Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 2: Short Papers)

2014

pdf bib
Online Word Alignment for Online Adaptive Machine Translation
M. Amin Farajian | Nicola Bertoldi | Marcello Federico
Proceedings of the EACL 2014 Workshop on Humans and Computer-assisted Translation

pdf bib
MT-EQuAl: a Toolkit for Human Assessment of Machine Translation Output
Christian Girardi | Luisa Bentivogli | Mohammad Amin Farajian | Marcello Federico
Proceedings of COLING 2014, the 25th International Conference on Computational Linguistics: System Demonstrations

pdf bib
The MateCat Tool
Marcello Federico | Nicola Bertoldi | Mauro Cettolo | Matteo Negri | Marco Turchi | Marco Trombetti | Alessandro Cattelan | Antonio Farina | Domenico Lupinetti | Andrea Martines | Alberto Massidda | Holger Schwenk | Loïc Barrault | Frederic Blain | Philipp Koehn | Christian Buck | Ulrich Germann
Proceedings of COLING 2014, the 25th International Conference on Computational Linguistics: System Demonstrations

pdf bib
Assessing the Impact of Translation Errors on Machine Translation Quality with Mixed-effects Models
Marcello Federico | Matteo Negri | Luisa Bentivogli | Marco Turchi
Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP)

pdf bib
Proceedings of the 17th Annual conference of the European Association for Machine Translation
Mauro Cettolo | Marcello Federico | Lucia Specia | Andy Way
Proceedings of the 17th Annual conference of the European Association for Machine Translation

pdf bib
MateCat
Marcello Federico
Proceedings of the 17th Annual conference of the European Association for Machine Translation

pdf bib
Complexity of spoken versus written language for machine translation
Nicholas Ruiz | Marcello Federico
Proceedings of the 17th Annual conference of the European Association for Machine Translation

2013

pdf bib
Coping with the Subjectivity of Human Judgements in MT Quality Estimation
Marco Turchi | Matteo Negri | Marcello Federico
Proceedings of the Eighth Workshop on Statistical Machine Translation

pdf bib
Online Learning Approaches in Computer Assisted Translation
Prashant Mathur | Mauro Cettolo | Marcello Federico
Proceedings of the Eighth Workshop on Statistical Machine Translation

pdf bib
Efficient Solutions for Word Reordering in German-English Phrase-Based Statistical Machine Translation
Arianna Bisazza | Marcello Federico
Proceedings of the Eighth Workshop on Statistical Machine Translation

pdf bib
Dynamically Shaping the Reordering Search Space of Phrase-Based Statistical Machine Translation
Arianna Bisazza | Marcello Federico
Transactions of the Association for Computational Linguistics, Volume 1

Defining the reordering search space is a crucial issue in phrase-based SMT between distant languages. In fact, the optimal trade-off between accuracy and complexity of decoding is nowadays reached by harshly limiting the input permutation space. We propose a method to dynamically shape such space and, thus, capture long-range word movements without hurting translation quality nor decoding time. The space defined by loose reordering constraints is dynamically pruned through a binary classifier that predicts whether a given input word should be translated right after another. The integration of this model into a phrase-based decoder improves a strong Arabic-English baseline already including state-of-the-art early distortion cost (Moore and Quirk, 2007) and hierarchical phrase orientation models (Galley and Manning, 2008). Significant improvements in the reordering of verbs are achieved by a system that is notably faster than the baseline, while bleu and meteor remain stable, or even increase, at a very high distortion limit.

2012

pdf bib
Proceedings of the 16th Annual conference of the European Association for Machine Translation
Mauro Cettolo | Marcello Federico | Lucia Specia | Andy Way
Proceedings of the 16th Annual conference of the European Association for Machine Translation

pdf bib
Crowd-based MT Evaluation for non-English Target Languages
Michael Paul | Eiichiro Sumita | Luisa Bentivogli | Marcello Federico
Proceedings of the 16th Annual conference of the European Association for Machine Translation

pdf bib
WIT3: Web Inventory of Transcribed and Translated Talks
Mauro Cettolo | Christian Girardi | Marcello Federico
Proceedings of the 16th Annual conference of the European Association for Machine Translation

pdf bib
Modified Distortion Matrices for Phrase-Based Statistical Machine Translation
Arianna Bisazza | Marcello Federico
Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

pdf bib
Detecting Semantic Equivalence and Information Disparity in Cross-lingual Documents
Yashar Mehdad | Matteo Negri | Marcello Federico
Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)

pdf bib
The IWSLT 2011 Evaluation Campaign on Automatic Talk Translation
Marcello Federico | Sebastian Stüker | Luisa Bentivogli | Michael Paul | Mauro Cettolo | Teresa Herrmann | Jan Niehues | Giovanni Moretti
Proceedings of the Eighth International Conference on Language Resources and Evaluation (LREC'12)

We report here on the eighth evaluation campaign organized in 2011 by the IWSLT workshop series. That IWSLT 2011 evaluation focused on the automatic translation of public talks and included tracks for speech recognition, speech translation, text translation, and system combination. Unlike in previous years, all data supplied for the evaluation has been publicly released on the workshop website, and is at the disposal of researchers interested in working on our benchmarks and in comparing their results with those published at the workshop. This paper provides an overview of the IWSLT 2011 evaluation campaign, and describes the data supplied, the evaluation infrastructure made available to participants, and the subjective evaluation carried out.

pdf bib
Match without a Referee: Evaluating MT Adequacy without Reference Translations
Yashar Mehdad | Matteo Negri | Marcello Federico
Proceedings of the Seventh Workshop on Statistical Machine Translation

pdf bib
Evaluating the Learning Curve of Domain Adaptive Statistical Machine Translation Systems
Nicola Bertoldi | Mauro Cettolo | Marcello Federico | Christian Buck
Proceedings of the Seventh Workshop on Statistical Machine Translation

pdf bib
Cutting the Long Tail: Hybrid Language Models for Translation Style Adaptation
Arianna Bisazza | Marcello Federico
Proceedings of the 13th Conference of the European Chapter of the Association for Computational Linguistics

2011

pdf bib
Topic Adaptation for Lecture Translation through Bilingual Latent Semantic Models
Nick Ruiz | Marcello Federico
Proceedings of the Sixth Workshop on Statistical Machine Translation

pdf bib
The Uppsala-FBK systems at WMT 2011
Christian Hardmeier | Jörg Tiedemann | Markus Saers | Marcello Federico | Prashant Mathur
Proceedings of the Sixth Workshop on Statistical Machine Translation

pdf bib
Bootstrapping Arabic-Italian SMT through Comparable Texts and Pivot Translation
Mauro Cettolo | Nicola Bertoldi | Marcello Federico
Proceedings of the 15th Annual conference of the European Association for Machine Translation

pdf bib
Using Bilingual Parallel Corpora for Cross-Lingual Textual Entailment
Yashar Mehdad | Matteo Negri | Marcello Federico
Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies

pdf bib
Book Review: Cross-Language Information Retrieval by Jian-Yun Nie
Marcello Federico
Computational Linguistics, Volume 37, Issue 2 - June 2011

2010

pdf bib
Towards Cross-Lingual Textual Entailment
Yashar Mehdad | Matteo Negri | Marcello Federico
Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the Association for Computational Linguistics

pdf bib
Statistical Machine Translation of Texts with Misspelled Words
Nicola Bertoldi | Mauro Cettolo | Marcello Federico
Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the Association for Computational Linguistics

pdf bib
FBK at WMT 2010: Word Lattices for Morphological Reduction and Chunk-Based Reordering
Christian Hardmeier | Arianna Bisazza | Marcello Federico
Proceedings of the Joint Fifth Workshop on Statistical Machine Translation and MetricsMATR

pdf bib
Chunk-Based Verb Reordering in VSO Sentences for Arabic-English Statistical Machine Translation
Arianna Bisazza | Marcello Federico
Proceedings of the Joint Fifth Workshop on Statistical Machine Translation and MetricsMATR

2009

pdf bib
Domain Adaptation for Statistical Machine Translation with Monolingual Resources
Nicola Bertoldi | Marcello Federico
Proceedings of the Fourth Workshop on Statistical Machine Translation

2007

pdf bib
Efficient Handling of N-gram Language Models for Statistical Machine Translation
Marcello Federico | Mauro Cettolo
Proceedings of the Second Workshop on Statistical Machine Translation

pdf bib
Moses: Open Source Toolkit for Statistical Machine Translation
Philipp Koehn | Hieu Hoang | Alexandra Birch | Chris Callison-Burch | Marcello Federico | Nicola Bertoldi | Brooke Cowan | Wade Shen | Christine Moran | Richard Zens | Chris Dyer | Ondřej Bojar | Alexandra Constantin | Evan Herbst
Proceedings of the 45th Annual Meeting of the Association for Computational Linguistics Companion Volume Proceedings of the Demo and Poster Sessions

2006

pdf bib
Maximum Entropy Tagging with Binary and Real-Valued Features
Vanessa Sandrini | Marcello Federico | Mauro Cettolo
Proceedings of the Workshop on Learning Structured Information in Natural Language Applications

pdf bib
Morpho-syntactic Information for Automatic Error Analysis of Statistical Machine Translation Output
Maja Popović | Adrià de Gispert | Deepa Gupta | Patrik Lambert | Hermann Ney | José B. Mariño | Marcello Federico | Rafael Banchs
Proceedings on the Workshop on Statistical Machine Translation

pdf bib
How Many Bits Are Needed To Store Probabilities for Phrase-Based Translation?
Marcello Federico | Nicola Bertoldi
Proceedings on the Workshop on Statistical Machine Translation

pdf bib
Exploiting Word Transformation in Statistical Machine Translation from Spanish to English
Deepa Gupta | Marcello Federico
Proceedings of the 11th Annual conference of the European Association for Machine Translation

pdf bib
A Web-based Demonstrator of a Multi-lingual Phrase-based Translation System
Roldano Cattoni | Nicola Bertoldi | Mauro Cettolo | Boxing Chen | Marcello Federico
Demonstrations

2002

pdf bib
Bootstrapping Named Entity Recognition for Italian Broadcast News
Marcello Federico | Nicola Bertoldi | Vanessa Sandrini
Proceedings of the 2002 Conference on Empirical Methods in Natural Language Processing (EMNLP 2002)

2000

pdf bib
Development and Evaluation of an Italian Broadcast News Corpus
Marcello Federico | Dimitri Giordani | Paolo Coletti
Proceedings of the Second International Conference on Language Resources and Evaluation (LREC’00)

Search
Co-authors