Maolin Li


2020

pdf bib
Supporting Comedy Writers: Predicting Audience’s Response from Sketch Comedy and Crosstalk Scripts
Maolin Li
Proceedings of the First Workshop on Computational Approaches to Discourse

Sketch comedy and crosstalk are two popular types of comedy. They can relieve people’s stress and thus benefit their mental health, especially when performances and scripts are high-quality. However, writing a script is time-consuming and its quality is difficult to achieve. In order to minimise the time and effort needed for producing an excellent script, we explore ways of predicting the audience’s response from the comedy scripts. For this task, we present a corpus of annotated scripts from popular television entertainment programmes in recent years. Annotations include a) text classification labels, indicating which actor’s lines made the studio audience laugh; b) information extraction labels, i.e. the text spans that made the audience laughed immediately after the performers said them. The corpus will also be useful for dialogue systems and discourse analysis, since our annotations are based on entire scripts. In addition, we evaluate different baseline algorithms. Experimental results demonstrate that BERT models can achieve the best predictions among all the baseline methods. Furthermore, we conduct an error analysis and investigate predictions across scripts with different styles.

pdf bib
A Neural Model for Aggregating Coreference Annotation in Crowdsourcing
Maolin Li | Hiroya Takamura | Sophia Ananiadou
Proceedings of the 28th International Conference on Computational Linguistics

Coreference resolution is the task of identifying all mentions in a text that refer to the same real-world entity. Collecting sufficient labelled data from expert annotators to train a high-performance coreference resolution system is time-consuming and expensive. Crowdsourcing makes it possible to obtain the required amounts of data rapidly and cost-effectively. However, crowd-sourced labels can be noisy. To ensure high-quality data, it is crucial to infer the correct labels by aggregating the noisy labels. In this paper, we split the aggregation into two subtasks, i.e, mention classification and coreference chain inference. Firstly, we predict the general class of each mention using an autoencoder, which incorporates contextual information about each mention, while at the same time taking into account the mention’s annotation complexity and annotators’ reliability at different levels. Secondly, to determine the coreference chain of each mention, we use weighted voting which takes into account the learned reliability in the first subtask. Experimental results demonstrate the effectiveness of our method in predicting the correct labels. We also illustrate our model’s interpretability through a comprehensive analysis of experimental results.

2019

pdf bib
Modelling Instance-Level Annotator Reliability for Natural Language Labelling Tasks
Maolin Li | Arvid Fahlström Myrman | Tingting Mu | Sophia Ananiadou
Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)

When constructing models that learn from noisy labels produced by multiple annotators, it is important to accurately estimate the reliability of annotators. Annotators may provide labels of inconsistent quality due to their varying expertise and reliability in a domain. Previous studies have mostly focused on estimating each annotator’s overall reliability on the entire annotation task. However, in practice, the reliability of an annotator may depend on each specific instance. Only a limited number of studies have investigated modelling per-instance reliability and these only considered binary labels. In this paper, we propose an unsupervised model which can handle both binary and multi-class labels. It can automatically estimate the per-instance reliability of each annotator and the correct label for each instance. We specify our model as a probabilistic model which incorporates neural networks to model the dependency between latent variables and instances. For evaluation, the proposed method is applied to both synthetic and real data, including two labelling tasks: text classification and textual entailment. Experimental results demonstrate our novel method can not only accurately estimate the reliability of annotators across different instances, but also achieve superior performance in predicting the correct labels and detecting the least reliable annotators compared to state-of-the-art baselines.

2017

pdf bib
Proactive Learning for Named Entity Recognition
Maolin Li | Nhung Nguyen | Sophia Ananiadou
BioNLP 2017

The goal of active learning is to minimise the cost of producing an annotated dataset, in which annotators are assumed to be perfect, i.e., they always choose the correct labels. However, in practice, annotators are not infallible, and they are likely to assign incorrect labels to some instances. Proactive learning is a generalisation of active learning that can model different kinds of annotators. Although proactive learning has been applied to certain labelling tasks, such as text classification, there is little work on its application to named entity (NE) tagging. In this paper, we propose a proactive learning method for producing NE annotated corpora, using two annotators with different levels of expertise, and who charge different amounts based on their levels of experience. To optimise both cost and annotation quality, we also propose a mechanism to present multiple sentences to annotators at each iteration. Experimental results for several corpora show that our method facilitates the construction of high-quality NE labelled datasets at minimal cost.