Lisa Bauer


2020

pdf bib
Simple Compounded-Label Training for Fact Extraction and Verification
Yixin Nie | Lisa Bauer | Mohit Bansal
Proceedings of the Third Workshop on Fact Extraction and VERification (FEVER)

Automatic fact checking is an important task motivated by the need for detecting and preventing the spread of misinformation across the web. The recently released FEVER challenge provides a benchmark task that assesses systems’ capability for both the retrieval of required evidence and the identification of authentic claims. Previous approaches share a similar pipeline training paradigm that decomposes the task into three subtasks, with each component built and trained separately. Although achieving acceptable scores, these methods induce difficulty for practical application development due to unnecessary complexity and expensive computation. In this paper, we explore the potential of simplifying the system design and reducing training computation by proposing a joint training setup in which a single sequence matching model is trained with compounded labels that give supervision for both sentence selection and claim verification subtasks, eliminating the duplicate computation that occurs when models are designed and trained separately. Empirical results on FEVER indicate that our method: (1) outperforms the typical multi-task learning approach, and (2) gets comparable results to top performing systems with a much simpler training setup and less training computation (in terms of the amount of data consumed and the number of model parameters), facilitating future works on the automatic fact checking task and its practical usage.

2018

pdf bib
Commonsense for Generative Multi-Hop Question Answering Tasks
Lisa Bauer | Yicheng Wang | Mohit Bansal
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing

Reading comprehension QA tasks have seen a recent surge in popularity, yet most works have focused on fact-finding extractive QA. We instead focus on a more challenging multi-hop generative task (NarrativeQA), which requires the model to reason, gather, and synthesize disjoint pieces of information within the context to generate an answer. This type of multi-step reasoning also often requires understanding implicit relations, which humans resolve via external, background commonsense knowledge. We first present a strong generative baseline that uses a multi-attention mechanism to perform multiple hops of reasoning and a pointer-generator decoder to synthesize the answer. This model performs substantially better than previous generative models, and is competitive with current state-of-the-art span prediction models. We next introduce a novel system for selecting grounded multi-hop relational commonsense information from ConceptNet via a pointwise mutual information and term-frequency based scoring function. Finally, we effectively use this extracted commonsense information to fill in gaps of reasoning between context hops, using a selectively-gated attention mechanism. This boosts the model’s performance significantly (also verified via human evaluation), establishing a new state-of-the-art for the task. We also show that our background knowledge enhancements are generalizable and improve performance on QAngaroo-WikiHop, another multi-hop reasoning dataset.