Lifeng Han


2020

pdf bib
MultiMWE: Building a Multi-lingual Multi-Word Expression (MWE) Parallel Corpora
Lifeng Han | Gareth Jones | Alan Smeaton
Proceedings of the 12th Language Resources and Evaluation Conference

Multi-word expressions (MWEs) are a hot topic in research in natural language processing (NLP), including topics such as MWE detection, MWE decomposition, and research investigating the exploitation of MWEs in other NLP fields such as Machine Translation. However, the availability of bilingual or multi-lingual MWE corpora is very limited. The only bilingual MWE corpora that we are aware of is from the PARSEME (PARSing and Multi-word Expressions) EU Project. This is a small collection of only 871 pairs of English-German MWEs. In this paper, we present multi-lingual and bilingual MWE corpora that we have extracted from root parallel corpora. Our collections are 3,159,226 and 143,042 bilingual MWE pairs for German-English and Chinese-English respectively after filtering. We examine the quality of these extracted bilingual MWEs in MT experiments. Our initial experiments applying MWEs in MT show improved translation performances on MWE terms in qualitative analysis and better general evaluation scores in quantitative analysis, on both German-English and Chinese-English language pairs. We follow a standard experimental pipeline to create our MultiMWE corpora which are available online. Researchers can use this free corpus for their own models or use them in a knowledge base as model features.

pdf bib
AlphaMWE: Construction of Multilingual Parallel Corpora with MWE Annotations
Lifeng Han | Gareth Jones | Alan Smeaton
Proceedings of the Joint Workshop on Multiword Expressions and Electronic Lexicons

In this work, we present the construction of multilingual parallel corpora with annotation of multiword expressions (MWEs). MWEs include verbal MWEs (vMWEs) defined in the PARSEME shared task that have a verb as the head of the studied terms. The annotated vMWEs are also bilingually and multilingually aligned manually. The languages covered include English, Chinese, Polish, and German. Our original English corpus is taken from the PARSEME shared task in 2018. We performed machine translation of this source corpus followed by human post editing and annotation of target MWEs. Strict quality control was applied for error limitation, i.e., each MT output sentence received first manual post editing and annotation plus second manual quality rechecking. One of our findings during corpora preparation is that accurate translation of MWEs presents challenges to MT systems. To facilitate further MT research, we present a categorisation of the error types encountered by MT systems in performing MWE related translation. To acquire a broader view of MT issues, we selected four popular state-of-the-art MT models for comparisons namely: Microsoft Bing Translator, GoogleMT, Baidu Fanyi and DeepL MT. Because of the noise removal, translation post editing and MWE annotation by human professionals, we believe our AlphaMWE dataset will be an asset for cross-lingual and multilingual research, such as MT and information extraction. Our multilingual corpora are available as open access at github.com/poethan/AlphaMWE.

2017

pdf bib
Detection of Verbal Multi-Word Expressions via Conditional Random Fields with Syntactic Dependency Features and Semantic Re-Ranking
Alfredo Maldonado | Lifeng Han | Erwan Moreau | Ashjan Alsulaimani | Koel Dutta Chowdhury | Carl Vogel | Qun Liu
Proceedings of the 13th Workshop on Multiword Expressions (MWE 2017)

A description of a system for identifying Verbal Multi-Word Expressions (VMWEs) in running text is presented. The system mainly exploits universal syntactic dependency features through a Conditional Random Fields (CRF) sequence model. The system competed in the Closed Track at the PARSEME VMWE Shared Task 2017, ranking 2nd place in most languages on full VMWE-based evaluation and 1st in three languages on token-based evaluation. In addition, this paper presents an option to re-rank the 10 best CRF-predicted sequences via semantic vectors, boosting its scores above other systems in the competition. We also show that all systems in the competition would struggle to beat a simple lookup baseline system and argue for a more purpose-specific evaluation scheme.