Liang Xu


2020

pdf bib
OCNLI: Original Chinese Natural Language Inference
Hai Hu | Kyle Richardson | Liang Xu | Lu Li | Sandra Kübler | Lawrence Moss
Findings of the Association for Computational Linguistics: EMNLP 2020

Despite the tremendous recent progress on natural language inference (NLI), driven largely by large-scale investment in new datasets (e.g.,SNLI, MNLI) and advances in modeling, most progress has been limited to English due to a lack of reliable datasets for most of the world’s languages. In this paper, we present the first large-scale NLI dataset (consisting of ~56,000 annotated sentence pairs) for Chinese called the Original Chinese Natural Language Inference dataset (OCNLI). Unlike recent attempts at extending NLI to other languages, our dataset does not rely on any automatic translation or non-expert annotation. Instead, we elicit annotations from native speakers specializing in linguistics. We follow closely the annotation protocol used for MNLI, but create new strategies for eliciting diverse hypotheses. We establish several baseline results on our dataset using state-of-the-art pre-trained models for Chinese, and find even the best performing models to be far outpaced by human performance (~12% absolute performance gap), making it a challenging new resource that we hope will help to accelerate progress in Chinese NLU. To the best of our knowledge, this is the first human-elicited MNLI-style corpus for a non-English language.

pdf bib
CLUE: A Chinese Language Understanding Evaluation Benchmark
Liang Xu | Hai Hu | Xuanwei Zhang | Lu Li | Chenjie Cao | Yudong Li | Yechen Xu | Kai Sun | Dian Yu | Cong Yu | Yin Tian | Qianqian Dong | Weitang Liu | Bo Shi | Yiming Cui | Junyi Li | Jun Zeng | Rongzhao Wang | Weijian Xie | Yanting Li | Yina Patterson | Zuoyu Tian | Yiwen Zhang | He Zhou | Shaoweihua Liu | Zhe Zhao | Qipeng Zhao | Cong Yue | Xinrui Zhang | Zhengliang Yang | Kyle Richardson | Zhenzhong Lan
Proceedings of the 28th International Conference on Computational Linguistics

The advent of natural language understanding (NLU) benchmarks for English, such as GLUE and SuperGLUE allows new NLU models to be evaluated across a diverse set of tasks. These comprehensive benchmarks have facilitated a broad range of research and applications in natural language processing (NLP). The problem, however, is that most such benchmarks are limited to English, which has made it difficult to replicate many of the successes in English NLU for other languages. To help remedy this issue, we introduce the first large-scale Chinese Language Understanding Evaluation (CLUE) benchmark. CLUE is an open-ended, community-driven project that brings together 9 tasks spanning several well-established single-sentence/sentence-pair classification tasks, as well as machine reading comprehension, all on original Chinese text. To establish results on these tasks, we report scores using an exhaustive set of current state-of-the-art pre-trained Chinese models (9 in total). We also introduce a number of supplementary datasets and additional tools to help facilitate further progress on Chinese NLU. Our benchmark is released at https://www.cluebenchmarks.com

pdf bib
Cipher: A Prototype Game-with-a-Purpose for Detecting Errors in Text
Liang Xu | Jon Chamberlain
Workshop on Games and Natural Language Processing

Errors commonly exist in machine-generated documents and publication materials; however, some correction algorithms do not perform well for complex errors and it is costly to employ humans to do the task. To solve the problem, a prototype computer game called Cipher was developed that encourages people to identify errors in text. Gamification is achieved by introducing the idea of steganography as the entertaining game element. People play the game for entertainment while they make valuable annotations to locate text errors. The prototype was tested by 35 players in a evaluation experiment, creating 4,764 annotations. After filtering the data, the system detected manually introduced text errors and also genuine errors in the texts that were not noticed when they were introduced into the game.

2019

pdf bib
An ensemble CNN method for biomedical entity normalization
Pan Deng | Haipeng Chen | Mengyao Huang | Xiaowen Ruan | Liang Xu
Proceedings of The 5th Workshop on BioNLP Open Shared Tasks

Different representations of the same concept could often be seen in scientific reports and publications. Entity normalization (or entity linking) is the task to match the different representations to their standard concepts. In this paper, we present a two-step ensemble CNN method that normalizes microbiology-related entities in free text to concepts in standard dictionaries. The method is capable of linking entities when only a small microbiology-related biomedical corpus is available for training, and achieved reasonable performance in the online test of the BioNLP-OST19 shared task Bacteria Biotope.