Lei Hou


2020

pdf bib
MOOCCube: A Large-scale Data Repository for NLP Applications in MOOCs
Jifan Yu | Gan Luo | Tong Xiao | Qingyang Zhong | Yuquan Wang | Wenzheng Feng | Junyi Luo | Chenyu Wang | Lei Hou | Juanzi Li | Zhiyuan Liu | Jie Tang
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

The prosperity of Massive Open Online Courses (MOOCs) provides fodder for many NLP and AI research for education applications, e.g., course concept extraction, prerequisite relation discovery, etc. However, the publicly available datasets of MOOC are limited in size with few types of data, which hinders advanced models and novel attempts in related topics. Therefore, we present MOOCCube, a large-scale data repository of over 700 MOOC courses, 100k concepts, 8 million student behaviors with an external resource. Moreover, we conduct a prerequisite discovery task as an example application to show the potential of MOOCCube in facilitating relevant research. The data repository is now available at http://moocdata.cn/data/MOOCCube.

pdf bib
Improving Event Detection via Open-domain Trigger Knowledge
Meihan Tong | Bin Xu | Shuai Wang | Yixin Cao | Lei Hou | Juanzi Li | Jun Xie
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

Event Detection (ED) is a fundamental task in automatically structuring texts. Due to the small scale of training data, previous methods perform poorly on unseen/sparsely labeled trigger words and are prone to overfitting densely labeled trigger words. To address the issue, we propose a novel Enrichment Knowledge Distillation (EKD) model to leverage external open-domain trigger knowledge to reduce the in-built biases to frequent trigger words in annotations. Experiments on benchmark ACE2005 show that our model outperforms nine strong baselines, is especially effective for unseen/sparsely labeled trigger words. The source code is released on https://github.com/shuaiwa16/ekd.git.

pdf bib
Dynamic Anticipation and Completion for Multi-Hop Reasoning over Sparse Knowledge Graph
Xin Lv | Xu Han | Lei Hou | Juanzi Li | Zhiyuan Liu | Wei Zhang | Yichi Zhang | Hao Kong | Suhui Wu
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

Multi-hop reasoning has been widely studied in recent years to seek an effective and interpretable method for knowledge graph (KG) completion. Most previous reasoning methods are designed for dense KGs with enough paths between entities, but cannot work well on those sparse KGs that only contain sparse paths for reasoning. On the one hand, sparse KGs contain less information, which makes it difficult for the model to choose correct paths. On the other hand, the lack of evidential paths to target entities also makes the reasoning process difficult. To solve these problems, we propose a multi-hop reasoning model over sparse KGs, by applying novel dynamic anticipation and completion strategies: (1) The anticipation strategy utilizes the latent prediction of embedding-based models to make our model perform more potential path search over sparse KGs. (2) Based on the anticipation information, the completion strategy dynamically adds edges as additional actions during the path search, which further alleviates the sparseness problem of KGs. The experimental results on five datasets sampled from Freebase, NELL and Wikidata show that our method outperforms state-of-the-art baselines. Our codes and datasets can be obtained from https://github.com/THU-KEG/DacKGR.

2019

pdf bib
Semi-supervised Entity Alignment via Joint Knowledge Embedding Model and Cross-graph Model
Chengjiang Li | Yixin Cao | Lei Hou | Jiaxin Shi | Juanzi Li | Tat-Seng Chua
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

Entity alignment aims at integrating complementary knowledge graphs (KGs) from different sources or languages, which may benefit many knowledge-driven applications. It is challenging due to the heterogeneity of KGs and limited seed alignments. In this paper, we propose a semi-supervised entity alignment method by joint Knowledge Embedding model and Cross-Graph model (KECG). It can make better use of seed alignments to propagate over the entire graphs with KG-based constraints. Specifically, as for the knowledge embedding model, we utilize TransE to implicitly complete two KGs towards consistency and learn relational constraints between entities. As for the cross-graph model, we extend Graph Attention Network (GAT) with projection constraint to robustly encode graphs, and two KGs share the same GAT to transfer structural knowledge as well as to ignore unimportant neighbors for alignment via attention mechanism. Results on publicly available datasets as well as further analysis demonstrate the effectiveness of KECG. Our codes can be found in https: //github.com/THU-KEG/KECG.

pdf bib
Adapting Meta Knowledge Graph Information for Multi-Hop Reasoning over Few-Shot Relations
Xin Lv | Yuxian Gu | Xu Han | Lei Hou | Juanzi Li | Zhiyuan Liu
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

Multi-hop knowledge graph (KG) reasoning is an effective and explainable method for predicting the target entity via reasoning paths in query answering (QA) task. Most previous methods assume that every relation in KGs has enough triples for training, regardless of those few-shot relations which cannot provide sufficient triples for training robust reasoning models. In fact, the performance of existing multi-hop reasoning methods drops significantly on few-shot relations. In this paper, we propose a meta-based multi-hop reasoning method (Meta-KGR), which adopts meta-learning to learn effective meta parameters from high-frequency relations that could quickly adapt to few-shot relations. We evaluate Meta-KGR on two public datasets sampled from Freebase and NELL, and the experimental results show that Meta-KGR outperforms state-of-the-art methods in few-shot scenarios. In the future, our codes and datasets will also be available to provide more details.

pdf bib
Fine-Grained Entity Typing via Hierarchical Multi Graph Convolutional Networks
Hailong Jin | Lei Hou | Juanzi Li | Tiansi Dong
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

This paper addresses the problem of inferring the fine-grained type of an entity from a knowledge base. We convert this problem into the task of graph-based semi-supervised classification, and propose Hierarchical Multi Graph Convolutional Network (HMGCN), a novel Deep Learning architecture to tackle this problem. We construct three kinds of connectivity matrices to capture different kinds of semantic correlations between entities. A recursive regularization is proposed to model the subClassOf relations between types in given type hierarchy. Extensive experiments with two large-scale public datasets show that our proposed method significantly outperforms four state-of-the-art methods.

pdf bib
Course Concept Expansion in MOOCs with External Knowledge and Interactive Game
Jifan Yu | Chenyu Wang | Gan Luo | Lei Hou | Juanzi Li | Zhiyuan Liu | Jie Tang
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

As Massive Open Online Courses (MOOCs) become increasingly popular, it is promising to automatically provide extracurricular knowledge for MOOC users. Suffering from semantic drifts and lack of knowledge guidance, existing methods can not effectively expand course concepts in complex MOOC environments. In this paper, we first build a novel boundary during searching for new concepts via external knowledge base and then utilize heterogeneous features to verify the high-quality results. In addition, to involve human efforts in our model, we design an interactive optimization mechanism based on a game. Our experiments on the four datasets from Coursera and XuetangX show that the proposed method achieves significant improvements(+0.19 by MAP) over existing methods.

2018

pdf bib
Joint Representation Learning of Cross-lingual Words and Entities via Attentive Distant Supervision
Yixin Cao | Lei Hou | Juanzi Li | Zhiyuan Liu | Chengjiang Li | Xu Chen | Tiansi Dong
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing

Jointly representation learning of words and entities benefits many NLP tasks, but has not been well explored in cross-lingual settings. In this paper, we propose a novel method for joint representation learning of cross-lingual words and entities. It captures mutually complementary knowledge, and enables cross-lingual inferences among knowledge bases and texts. Our method does not require parallel corpus, and automatically generates comparable data via distant supervision using multi-lingual knowledge bases. We utilize two types of regularizers to align cross-lingual words and entities, and design knowledge attention and cross-lingual attention to further reduce noises. We conducted a series of experiments on three tasks: word translation, entity relatedness, and cross-lingual entity linking. The results, both qualitative and quantitative, demonstrate the significance of our method.

pdf bib
Differentiating Concepts and Instances for Knowledge Graph Embedding
Xin Lv | Lei Hou | Juanzi Li | Zhiyuan Liu
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing

Concepts, which represent a group of different instances sharing common properties, are essential information in knowledge representation. Most conventional knowledge embedding methods encode both entities (concepts and instances) and relations as vectors in a low dimensional semantic space equally, ignoring the difference between concepts and instances. In this paper, we propose a novel knowledge graph embedding model named TransC by differentiating concepts and instances. Specifically, TransC encodes each concept in knowledge graph as a sphere and each instance as a vector in the same semantic space. We use the relative positions to model the relations between concepts and instances (i.e.,instanceOf), and the relations between concepts and sub-concepts (i.e., subClassOf). We evaluate our model on both link prediction and triple classification tasks on the dataset based on YAGO. Experimental results show that TransC outperforms state-of-the-art methods, and captures the semantic transitivity for instanceOf and subClassOf relation. Our codes and datasets can be obtained from https://github.com/davidlvxin/TransC.

pdf bib
Attributed and Predictive Entity Embedding for Fine-Grained Entity Typing in Knowledge Bases
Hailong Jin | Lei Hou | Juanzi Li | Tiansi Dong
Proceedings of the 27th International Conference on Computational Linguistics

Fine-grained entity typing aims at identifying the semantic type of an entity in KB. Type information is very important in knowledge bases, but are unfortunately incomplete even in some large knowledge bases. Limitations of existing methods are either ignoring the structure and type information in KB or requiring large scale annotated corpus. To address these issues, we propose an attributed and predictive entity embedding method, which can fully utilize various kinds of information comprehensively. Extensive experiments on two real DBpedia datasets show that our proposed method significantly outperforms 8 state-of-the-art methods, with 4.0% and 5.2% improvement in Mi-F1 and Ma-F1, respectively.

pdf bib
Neural Collective Entity Linking
Yixin Cao | Lei Hou | Juanzi Li | Zhiyuan Liu
Proceedings of the 27th International Conference on Computational Linguistics

Entity Linking aims to link entity mentions in texts to knowledge bases, and neural models have achieved recent success in this task. However, most existing methods rely on local contexts to resolve entities independently, which may usually fail due to the data sparsity of local information. To address this issue, we propose a novel neural model for collective entity linking, named as NCEL. NCEL apply Graph Convolutional Network to integrate both local contextual features and global coherence information for entity linking. To improve the computation efficiency, we approximately perform graph convolution on a subgraph of adjacent entity mentions instead of those in the entire text. We further introduce an attention scheme to improve the robustness of NCEL to data noise and train the model on Wikipedia hyperlinks to avoid overfitting and domain bias. In experiments, we evaluate NCEL on five publicly available datasets to verify the linking performance as well as generalization ability. We also conduct an extensive analysis of time complexity, the impact of key modules, and qualitative results, which demonstrate the effectiveness and efficiency of our proposed method.