Lea Frermann


2020

pdf bib
Screenplay Summarization Using Latent Narrative Structure
Pinelopi Papalampidi | Frank Keller | Lea Frermann | Mirella Lapata
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

Most general-purpose extractive summarization models are trained on news articles, which are short and present all important information upfront. As a result, such models are biased on position and often perform a smart selection of sentences from the beginning of the document. When summarizing long narratives, which have complex structure and present information piecemeal, simple position heuristics are not sufficient. In this paper, we propose to explicitly incorporate the underlying structure of narratives into general unsupervised and supervised extractive summarization models. We formalize narrative structure in terms of key narrative events (turning points) and treat it as latent in order to summarize screenplays (i.e., extract an optimal sequence of scenes). Experimental results on the CSI corpus of TV screenplays, which we augment with scene-level summarization labels, show that latent turning points correlate with important aspects of a CSI episode and improve summarization performance over general extractive algorithms leading to more complete and diverse summaries.

2019

pdf bib
Partners in Crime: Multi-view Sequential Inference for Movie Understanding
Nikos Papasarantopoulos | Lea Frermann | Mirella Lapata | Shay B. Cohen
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

Multi-view learning algorithms are powerful representation learning tools, often exploited in the context of multimodal problems. However, for problems requiring inference at the token-level of a sequence (that is, a separate prediction must be made for every time step), it is often the case that single-view systems are used, or that more than one views are fused in a simple manner. We describe an incremental neural architecture paired with a novel training objective for incremental inference. The network operates on multi-view data. We demonstrate the effectiveness of our approach on the problem of predicting perpetrators in crime drama series, for which our model significantly outperforms previous work and strong baselines. Moreover, we introduce two tasks, crime case and speaker type tagging, that contribute to movie understanding and demonstrate the effectiveness of our model on them.

pdf bib
Book QA: Stories of Challenges and Opportunities
Stefanos Angelidis | Lea Frermann | Diego Marcheggiani | Roi Blanco | Lluís Màrquez
Proceedings of the 2nd Workshop on Machine Reading for Question Answering

We present a system for answering questions based on the full text of books (BookQA), which first selects book passages given a question at hand, and then uses a memory network to reason and predict an answer. To improve generalization, we pretrain our memory network using artificial questions generated from book sentences. We experiment with the recently published NarrativeQA corpus, on the subset of Who questions, which expect book characters as answers. We experimentally show that BERT-based retrieval and pretraining improve over baseline results significantly. At the same time, we confirm that NarrativeQA is a highly challenging data set, and that there is need for novel research in order to achieve high-precision BookQA results. We analyze some of the bottlenecks of the current approach, and we argue that more research is needed on text representation, retrieval of relevant passages, and reasoning, including commonsense knowledge.

pdf bib
Extractive NarrativeQA with Heuristic Pre-Training
Lea Frermann
Proceedings of the 2nd Workshop on Machine Reading for Question Answering

Although advances in neural architectures for NLP problems as well as unsupervised pre-training have led to substantial improvements on question answering and natural language inference, understanding of and reasoning over long texts still poses a substantial challenge. Here, we consider the task of question answering from full narratives (e.g., books or movie scripts), or their summaries, tackling the NarrativeQA challenge (NQA; Kocisky et al. (2018)). We introduce a heuristic extractive version of the data set, which allows us to approach the more feasible problem of answer extraction (rather than generation). We train systems for passage retrieval as well as answer span prediction using this data set. We use pre-trained BERT embeddings for injecting prior knowledge into our system. We show that our setup leads to state of the art performance on summary-level QA. On QA from full narratives, our model outperforms previous models on the METEOR metric. We analyze the relative contributions of pre-trained embeddings and the extractive training paradigm, and provide a detailed error analysis.

pdf bib
Inducing Document Structure for Aspect-based Summarization
Lea Frermann | Alexandre Klementiev
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

Automatic summarization is typically treated as a 1-to-1 mapping from document to summary. Documents such as news articles, however, are structured and often cover multiple topics or aspects; and readers may be interested in only some of them. We tackle the task of aspect-based summarization, where, given a document and a target aspect, our models generate a summary centered around the aspect. We induce latent document structure jointly with an abstractive summarization objective, and train our models in a scalable synthetic setup. In addition to improvements in summarization over topic-agnostic baselines, we demonstrate the benefit of the learnt document structure: we show that our models (a) learn to accurately segment documents by aspect; (b) can leverage the structure to produce both abstractive and extractive aspect-based summaries; and (c) that structure is particularly advantageous for summarizing long documents. All results transfer from synthetic training documents to natural news articles from CNN/Daily Mail and RCV1.

2018

pdf bib
Unsupervised Induction of Linguistic Categories with Records of Reading, Speaking, and Writing
Maria Barrett | Ana Valeria González-Garduño | Lea Frermann | Anders Søgaard
Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers)

When learning POS taggers and syntactic chunkers for low-resource languages, different resources may be available, and often all we have is a small tag dictionary, motivating type-constrained unsupervised induction. Even small dictionaries can improve the performance of unsupervised induction algorithms. This paper shows that performance can be further improved by including data that is readily available or can be easily obtained for most languages, i.e., eye-tracking, speech, or keystroke logs (or any combination thereof). We project information from all these data sources into shared spaces, in which the union of words is represented. For English unsupervised POS induction, the additional information, which is not required at test time, leads to an average error reduction on Ontonotes domains of 1.5% over systems augmented with state-of-the-art word embeddings. On Penn Treebank the best model achieves 5.4% error reduction over a word embeddings baseline. We also achieve significant improvements for syntactic chunk induction. Our analysis shows that improvements are even bigger when the available tag dictionaries are smaller.

pdf bib
Whodunnit? Crime Drama as a Case for Natural Language Understanding
Lea Frermann | Shay B. Cohen | Mirella Lapata
Transactions of the Association for Computational Linguistics, Volume 6

In this paper we argue that crime drama exemplified in television programs such as CSI: Crime Scene Investigation is an ideal testbed for approximating real-world natural language understanding and the complex inferences associated with it. We propose to treat crime drama as a new inference task, capitalizing on the fact that each episode poses the same basic question (i.e., who committed the crime) and naturally provides the answer when the perpetrator is revealed. We develop a new dataset based on CSI episodes, formalize perpetrator identification as a sequence labeling problem, and develop an LSTM-based model which learns from multi-modal data. Experimental results show that an incremental inference strategy is key to making accurate guesses as well as learning from representations fusing textual, visual, and acoustic input.

2017

pdf bib
Inducing Semantic Micro-Clusters from Deep Multi-View Representations of Novels
Lea Frermann | György Szarvas
Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing

Automatically understanding the plot of novels is important both for informing literary scholarship and applications such as summarization or recommendation. Various models have addressed this task, but their evaluation has remained largely intrinsic and qualitative. Here, we propose a principled and scalable framework leveraging expert-provided semantic tags (e.g., mystery, pirates) to evaluate plot representations in an extrinsic fashion, assessing their ability to produce locally coherent groupings of novels (micro-clusters) in model space. We present a deep recurrent autoencoder model that learns richly structured multi-view plot representations, and show that they i) yield better micro-clusters than less structured representations; and ii) are interpretable, and thus useful for further literary analysis or labeling of the emerging micro-clusters.

2016

pdf bib
A Bayesian Model of Diachronic Meaning Change
Lea Frermann | Mirella Lapata
Transactions of the Association for Computational Linguistics, Volume 4

Word meanings change over time and an automated procedure for extracting this information from text would be useful for historical exploratory studies, information retrieval or question answering. We present a dynamic Bayesian model of diachronic meaning change, which infers temporal word representations as a set of senses and their prevalence. Unlike previous work, we explicitly model language change as a smooth, gradual process. We experimentally show that this modeling decision is beneficial: our model performs competitively on meaning change detection tasks whilst inducing discernible word senses and their development over time. Application of our model to the SemEval-2015 temporal classification benchmark datasets further reveals that it performs on par with highly optimized task-specific systems.

2015

pdf bib
A Bayesian Model for Joint Learning of Categories and their Features
Lea Frermann | Mirella Lapata
Proceedings of the 2015 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

2014

pdf bib
A Hierarchical Bayesian Model for Unsupervised Induction of Script Knowledge
Lea Frermann | Ivan Titov | Manfred Pinkal
Proceedings of the 14th Conference of the European Chapter of the Association for Computational Linguistics

pdf bib
Incremental Bayesian Learning of Semantic Categories
Lea Frermann | Mirella Lapata
Proceedings of the 14th Conference of the European Chapter of the Association for Computational Linguistics

2012

pdf bib
Cross-lingual Parse Disambiguation based on Semantic Correspondence
Lea Frermann | Francis Bond
Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)