Kyra Yee


2019

pdf bib
Simple and Effective Noisy Channel Modeling for Neural Machine Translation
Kyra Yee | Yann Dauphin | Michael Auli
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

Previous work on neural noisy channel modeling relied on latent variable models that incrementally process the source and target sentence. This makes decoding decisions based on partial source prefixes even though the full source is available. We pursue an alternative approach based on standard sequence to sequence models which utilize the entire source. These models perform remarkably well as channel models, even though they have neither been trained on, nor designed to factor over incomplete target sentences. Experiments with neural language models trained on billions of words show that noisy channel models can outperform a direct model by up to 3.2 BLEU on WMT’17 German-English translation. We evaluate on four language-pairs and our channel models consistently outperform strong alternatives such right-to-left reranking models and ensembles of direct models.

pdf bib
Facebook FAIR’s WMT19 News Translation Task Submission
Nathan Ng | Kyra Yee | Alexei Baevski | Myle Ott | Michael Auli | Sergey Edunov
Proceedings of the Fourth Conference on Machine Translation (Volume 2: Shared Task Papers, Day 1)

This paper describes Facebook FAIR’s submission to the WMT19 shared news translation task. We participate in four language directions, English <-> German and English <-> Russian in both directions. Following our submission from last year, our baseline systems are large BPE-based transformer models trained with the FAIRSEQ sequence modeling toolkit. This year we experiment with different bitext data filtering schemes, as well as with adding filtered back-translated data. We also ensemble and fine-tune our models on domain-specific data, then decode using noisy channel model reranking. Our system improves on our previous system’s performance by 4.5 BLEU points and achieves the best case-sensitive BLEU score for the translation direction English→Russian.

2016

pdf bib
Composition of Compound Nouns Using Distributional Semantics
Kyra Yee | Jugal Kalita
Proceedings of the 13th International Conference on Natural Language Processing