Kun Qian


2020

pdf bib
Answering Complex Questions by Combining Information from Curated and Extracted Knowledge Bases
Nikita Bhutani | Xinyi Zheng | Kun Qian | Yunyao Li | H. Jagadish
Proceedings of the First Workshop on Natural Language Interfaces

Knowledge-based question answering (KB_QA) has long focused on simple questions that can be answered from a single knowledge source, a manually curated or an automatically extracted KB. In this work, we look at answering complex questions which often require combining information from multiple sources. We present a novel KB-QA system, Multique, which can map a complex question to a complex query pattern using a sequence of simple queries each targeted at a specific KB. It finds simple queries using a neural-network based model capable of collective inference over textual relations in extracted KB and ontological relations in curated KB. Experiments show that our proposed system outperforms previous KB-QA systems on benchmark datasets, ComplexWebQuestions and WebQuestionsSP.

pdf bib
Learning Structured Representations of Entity Names using ActiveLearning and Weak Supervision
Kun Qian | Poornima Chozhiyath Raman | Yunyao Li | Lucian Popa
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

Structured representations of entity names are useful for many entity-related tasks such as entity normalization and variant generation. Learning the implicit structured representations of entity names without context and external knowledge is particularly challenging. In this paper, we present a novel learning framework that combines active learning and weak supervision to solve this problem. Our experimental evaluation show that this framework enables the learning of high-quality models from merely a dozen or so labeled examples.

2019

pdf bib
How to Build User Simulators to Train RL-based Dialog Systems
Weiyan Shi | Kun Qian | Xuewei Wang | Zhou Yu
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

User simulators are essential for training reinforcement learning (RL) based dialog models. The performance of the simulator directly impacts the RL policy. However, building a good user simulator that models real user behaviors is challenging. We propose a method of standardizing user simulator building that can be used by the community to compare dialog system quality using the same set of user simulators fairly. We present implementations of six user simulators trained with different dialog planning and generation methods. We then calculate a set of automatic metrics to evaluate the quality of these simulators both directly and indirectly. We also ask human users to assess the simulators directly and indirectly by rating the simulated dialogs and interacting with the trained systems. This paper presents a comprehensive evaluation framework for user simulator study and provides a better understanding of the pros and cons of different user simulators, as well as their impacts on the trained systems.

pdf bib
Domain Adaptive Dialog Generation via Meta Learning
Kun Qian | Zhou Yu
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

Domain adaptation is an essential task in dialog system building because there are so many new dialog tasks created for different needs every day. Collecting and annotating training data for these new tasks is costly since it involves real user interactions. We propose a domain adaptive dialog generation method based on meta-learning (DAML). DAML is an end-to-end trainable dialog system model that learns from multiple rich-resource tasks and then adapts to new domains with minimal training samples. We train a dialog system model using multiple rich-resource single-domain dialog data by applying the model-agnostic meta-learning algorithm to dialog domain. The model is capable of learning a competitive dialog system on a new domain with only a few training examples in an efficient manner. The two-step gradient updates in DAML enable the model to learn general features across multiple tasks. We evaluate our method on a simulated dialog dataset and achieve state-of-the-art performance, which is generalizable to new tasks.

pdf bib
Low-resource Deep Entity Resolution with Transfer and Active Learning
Jungo Kasai | Kun Qian | Sairam Gurajada | Yunyao Li | Lucian Popa
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

Entity resolution (ER) is the task of identifying different representations of the same real-world entities across databases. It is a key step for knowledge base creation and text mining. Recent adaptation of deep learning methods for ER mitigates the need for dataset-specific feature engineering by constructing distributed representations of entity records. While these methods achieve state-of-the-art performance over benchmark data, they require large amounts of labeled data, which are typically unavailable in realistic ER applications. In this paper, we develop a deep learning-based method that targets low-resource settings for ER through a novel combination of transfer learning and active learning. We design an architecture that allows us to learn a transferable model from a high-resource setting to a low-resource one. To further adapt to the target dataset, we incorporate active learning that carefully selects a few informative examples to fine-tune the transferred model. Empirical evaluation demonstrates that our method achieves comparable, if not better, performance compared to state-of-the-art learning-based methods while using an order of magnitude fewer labels.

2018

pdf bib
Exploiting Structure in Representation of Named Entities using Active Learning
Nikita Bhutani | Kun Qian | Yunyao Li | H. V. Jagadish | Mauricio Hernandez | Mitesh Vasa
Proceedings of the 27th International Conference on Computational Linguistics

Fundamental to several knowledge-centric applications is the need to identify named entities from their textual mentions. However, entities lack a unique representation and their mentions can differ greatly. These variations arise in complex ways that cannot be captured using textual similarity metrics. However, entities have underlying structures, typically shared by entities of the same entity type, that can help reason over their name variations. Discovering, learning and manipulating these structures typically requires high manual effort in the form of large amounts of labeled training data and handwritten transformation programs. In this work, we propose an active-learning based framework that drastically reduces the labeled data required to learn the structures of entities. We show that programs for mapping entity mentions to their structures can be automatically generated using human-comprehensible labels. Our experiments show that our framework consistently outperforms both handwritten programs and supervised learning models. We also demonstrate the utility of our framework in relation extraction and entity resolution tasks.