Koel Dutta Chowdhury

Also published as: Koel Dutta Chowdhury


2020

pdf bib
How Human is Machine Translationese? Comparing Human and Machine Translations of Text and Speech
Yuri Bizzoni | Tom S Juzek | Cristina España-Bonet | Koel Dutta Chowdhury | Josef van Genabith | Elke Teich
Proceedings of the 17th International Conference on Spoken Language Translation

Translationese is a phenomenon present in human translations, simultaneous interpreting, and even machine translations. Some translationese features tend to appear in simultaneous interpreting with higher frequency than in human text translation, but the reasons for this are unclear. This study analyzes translationese patterns in translation, interpreting, and machine translation outputs in order to explore possible reasons. In our analysis we – (i) detail two non-invasive ways of detecting translationese and (ii) compare translationese across human and machine translations from text and speech. We find that machine translation shows traces of translationese, but does not reproduce the patterns found in human translation, offering support to the hypothesis that such patterns are due to the model (human vs machine) rather than to the data (written vs spoken).

pdf bib
Understanding Translationese in Multi-view Embedding Spaces
Koel Dutta Chowdhury | Cristina España-Bonet | Josef van Genabith
Proceedings of the 28th International Conference on Computational Linguistics

Recent studies use a combination of lexical and syntactic features to show that footprints of the source language remain visible in translations, to the extent that it is possible to predict the original source language from the translation. In this paper, we focus on embedding-based semantic spaces, exploiting departures from isomorphism between spaces built from original target language and translations into this target language to predict relations between languages in an unsupervised way. We use different views of the data — words, parts of speech, semantic tags and synsets — to track translationese. Our analysis shows that (i) semantic distances between original target language and translations into this target language can be detected using the notion of isomorphism, (ii) language family ties with characteristics similar to linguistically motivated phylogenetic trees can be inferred from the distances and (iii) with delexicalised embeddings exhibiting source-language interference most significantly, other levels of abstraction display the same tendency, indicating the lexicalised results to be not “just” due to possible topic differences between original and translated texts. To the best of our knowledge, this is the first time departures from isomorphism between embedding spaces are used to track translationese.

2019

pdf bib
Understanding the Effect of Textual Adversaries in Multimodal Machine Translation
Koel Dutta Chowdhury | Desmond Elliott
Proceedings of the Beyond Vision and LANguage: inTEgrating Real-world kNowledge (LANTERN)

It is assumed that multimodal machine translation systems are better than text-only systems at translating phrases that have a direct correspondence in the image. This assumption has been challenged in experiments demonstrating that state-of-the-art multimodal systems perform equally well in the presence of randomly selected images, but, more recently, it has been shown that masking entities from the source language sentence during training can help to overcome this problem. In this paper, we conduct experiments with both visual and textual adversaries in order to understand the role of incorrect textual inputs to such systems. Our results show that when the source language sentence contains mistakes, multimodal translation systems do not leverage the additional visual signal to produce the correct translation. We also find that the degradation of translation performance caused by textual adversaries is significantly higher than by visual adversaries.

2018

pdf bib
Multimodal Neural Machine Translation for Low-resource Language Pairs using Synthetic Data
Koel Dutta Chowdhury | Mohammed Hasanuzzaman | Qun Liu
Proceedings of the Workshop on Deep Learning Approaches for Low-Resource NLP

In this paper, we investigate the effectiveness of training a multimodal neural machine translation (MNMT) system with image features for a low-resource language pair, Hindi and English, using synthetic data. A three-way parallel corpus which contains bilingual texts and corresponding images is required to train a MNMT system with image features. However, such a corpus is not available for low resource language pairs. To address this, we developed both a synthetic training dataset and a manually curated development/test dataset for Hindi based on an existing English-image parallel corpus. We used these datasets to build our image description translation system by adopting state-of-the-art MNMT models. Our results show that it is possible to train a MNMT system for low-resource language pairs through the use of synthetic data and that such a system can benefit from image features.

pdf bib
The RGNLP Machine Translation Systems for WAT 2018
Atul Kr. Ojha | Koel Dutta Chowdhury | Chao-Hong Liu | Karan Saxena
Proceedings of the 32nd Pacific Asia Conference on Language, Information and Computation: 5th Workshop on Asian Translation: 5th Workshop on Asian Translation

2017

pdf bib
ADAPT at IJCNLP-2017 Task 4: A Multinomial Naive Bayes Classification Approach for Customer Feedback Analysis task
Pintu Lohar | Koel Dutta Chowdhury | Haithem Afli | Mohammed Hasanuzzaman | Andy Way
Proceedings of the IJCNLP 2017, Shared Tasks

In this age of the digital economy, promoting organisations attempt their best to engage the customers in the feedback provisioning process. With the assistance of customer insights, an organisation can develop a better product and provide a better service to its customer. In this paper, we analyse the real world samples of customer feedback from Microsoft Office customers in four languages, i.e., English, French, Spanish and Japanese and conclude a five-plus-one-classes categorisation (comment, request, bug, complaint, meaningless and undetermined) for meaning classification. The task is to %access multilingual corpora annotated by the proposed meaning categorization scheme and develop a system to determine what class(es) the customer feedback sentences should be annotated as in four languages. We propose following approaches to accomplish this task: (i) a multinomial naive bayes (MNB) approach for multi-label classification, (ii) MNB with one-vs-rest classifier approach, and (iii) the combination of the multilabel classification-based and the sentiment classification-based approach. Our best system produces F-scores of 0.67, 0.83, 0.72 and 0.7 for English, Spanish, French and Japanese, respectively. The results are competitive to the best ones for all languages and secure 3rd and 5th position for Japanese and French, respectively, among all submitted systems.

pdf bib
Detection of Verbal Multi-Word Expressions via Conditional Random Fields with Syntactic Dependency Features and Semantic Re-Ranking
Alfredo Maldonado | Lifeng Han | Erwan Moreau | Ashjan Alsulaimani | Koel Dutta Chowdhury | Carl Vogel | Qun Liu
Proceedings of the 13th Workshop on Multiword Expressions (MWE 2017)

A description of a system for identifying Verbal Multi-Word Expressions (VMWEs) in running text is presented. The system mainly exploits universal syntactic dependency features through a Conditional Random Fields (CRF) sequence model. The system competed in the Closed Track at the PARSEME VMWE Shared Task 2017, ranking 2nd place in most languages on full VMWE-based evaluation and 1st in three languages on token-based evaluation. In addition, this paper presents an option to re-rank the 10 best CRF-predicted sequences via semantic vectors, boosting its scores above other systems in the competition. We also show that all systems in the competition would struggle to beat a simple lookup baseline system and argue for a more purpose-specific evaluation scheme.

pdf bib
DCU System Report on the WMT 2017 Multi-modal Machine Translation Task
Iacer Calixto | Koel Dutta Chowdhury | Qun Liu
Proceedings of the Second Conference on Machine Translation