Kian Kenyon-Dean


pdf bib
Learning Efficient Task-Specific Meta-Embeddings with Word Prisms
Jingyi He | Kc Tsiolis | Kian Kenyon-Dean | Jackie Chi Kit Cheung
Proceedings of the 28th International Conference on Computational Linguistics

Word embeddings are trained to predict word cooccurrence statistics, which leads them to possess different lexical properties (syntactic, semantic, etc.) depending on the notion of context defined at training time. These properties manifest when querying the embedding space for the most similar vectors, and when used at the input layer of deep neural networks trained to solve downstream NLP problems. Meta-embeddings combine multiple sets of differently trained word embeddings, and have been shown to successfully improve intrinsic and extrinsic performance over equivalent models which use just one set of source embeddings. We introduce word prisms: a simple and efficient meta-embedding method that learns to combine source embeddings according to the task at hand. Word prisms learn orthogonal transformations to linearly combine the input source embeddings, which allows them to be very efficient at inference time. We evaluate word prisms in comparison to other meta-embedding methods on six extrinsic evaluations and observe that word prisms offer improvements in performance on all tasks.

pdf bib
Deconstructing word embedding algorithms
Kian Kenyon-Dean | Edward Newell | Jackie Chi Kit Cheung
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

Word embeddings are reliable feature representations of words used to obtain high quality results for various NLP applications. Uncontextualized word embeddings are used in many NLP tasks today, especially in resource-limited settings where high memory capacity and GPUs are not available. Given the historical success of word embeddings in NLP, we propose a retrospective on some of the most well-known word embedding algorithms. In this work, we deconstruct Word2vec, GloVe, and others, into a common form, unveiling some of the common conditions that seem to be required for making performant word embeddings. We believe that the theoretical findings in this paper can provide a basis for more informed development of future models.


pdf bib
Resolving Event Coreference with Supervised Representation Learning and Clustering-Oriented Regularization
Kian Kenyon-Dean | Jackie Chi Kit Cheung | Doina Precup
Proceedings of the Seventh Joint Conference on Lexical and Computational Semantics

We present an approach to event coreference resolution by developing a general framework for clustering that uses supervised representation learning. We propose a neural network architecture with novel Clustering-Oriented Regularization (CORE) terms in the objective function. These terms encourage the model to create embeddings of event mentions that are amenable to clustering. We then use agglomerative clustering on these embeddings to build event coreference chains. For both within- and cross-document coreference on the ECB+ corpus, our model obtains better results than models that require significantly more pre-annotated information. This work provides insight and motivating results for a new general approach to solving coreference and clustering problems with representation learning.

pdf bib
Sentiment Analysis: It’s Complicated!
Kian Kenyon-Dean | Eisha Ahmed | Scott Fujimoto | Jeremy Georges-Filteau | Christopher Glasz | Barleen Kaur | Auguste Lalande | Shruti Bhanderi | Robert Belfer | Nirmal Kanagasabai | Roman Sarrazingendron | Rohit Verma | Derek Ruths
Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers)

Sentiment analysis is used as a proxy to measure human emotion, where the objective is to categorize text according to some predefined notion of sentiment. Sentiment analysis datasets are typically constructed with gold-standard sentiment labels, assigned based on the results of manual annotations. When working with such annotations, it is common for dataset constructors to discard “noisy” or “controversial” data where there is significant disagreement on the proper label. In datasets constructed for the purpose of Twitter sentiment analysis (TSA), these controversial examples can compose over 30% of the originally annotated data. We argue that the removal of such data is a problematic trend because, when performing real-time sentiment classification of short-text, an automated system cannot know a priori which samples would fall into this category of disputed sentiment. We therefore propose the notion of a “complicated” class of sentiment to categorize such text, and argue that its inclusion in the short-text sentiment analysis framework will improve the quality of automated sentiment analysis systems as they are implemented in real-world settings. We motivate this argument by building and analyzing a new publicly available TSA dataset of over 7,000 tweets annotated with 5x coverage, named MTSA. Our analysis of classifier performance over our dataset offers insights into sentiment analysis dataset and model design, how current techniques would perform in the real world, and how researchers should handle difficult data.


pdf bib
Verb Phrase Ellipsis Resolution Using Discriminative and Margin-Infused Algorithms
Kian Kenyon-Dean | Jackie Chi Kit Cheung | Doina Precup
Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing