Kevin Huang


2019

pdf bib
Relation Module for Non-Answerable Predictions on Reading Comprehension
Kevin Huang | Yun Tang | Jing Huang | Xiaodong He | Bowen Zhou
Proceedings of the 23rd Conference on Computational Natural Language Learning (CoNLL)

Machine reading comprehension (MRC) has attracted significant amounts of research attention recently, due to an increase of challenging reading comprehension datasets. In this paper, we aim to improve a MRC model’s ability to determine whether a question has an answer in a given context (e.g. the recently proposed SQuAD 2.0 task). The relation module consists of both semantic extraction and relational information. We first extract high level semantics as objects from both question and context with multi-head self-attentive pooling. These semantic objects are then passed to a relation network, which generates relationship scores for each object pair in a sentence. These scores are used to determine whether a question is non-answerable. We test the relation module on the SQuAD 2.0 dataset using both the BiDAF and BERT models as baseline readers. We obtain 1.8% gain of F1 accuracy on top of the BiDAF reader, and 1.0% on top of the BERT base model. These results show the effectiveness of our relation module on MRC.

pdf bib
The Materials Science Procedural Text Corpus: Annotating Materials Synthesis Procedures with Shallow Semantic Structures
Sheshera Mysore | Zachary Jensen | Edward Kim | Kevin Huang | Haw-Shiuan Chang | Emma Strubell | Jeffrey Flanigan | Andrew McCallum | Elsa Olivetti
Proceedings of the 13th Linguistic Annotation Workshop

Materials science literature contains millions of materials synthesis procedures described in unstructured natural language text. Large-scale analysis of these synthesis procedures would facilitate deeper scientific understanding of materials synthesis and enable automated synthesis planning. Such analysis requires extracting structured representations of synthesis procedures from the raw text as a first step. To facilitate the training and evaluation of synthesis extraction models, we introduce a dataset of 230 synthesis procedures annotated by domain experts with labeled graphs that express the semantics of the synthesis sentences. The nodes in this graph are synthesis operations and their typed arguments, and labeled edges specify relations between the nodes. We describe this new resource in detail and highlight some specific challenges to annotating scientific text with shallow semantic structure. We make the corpus available to the community to promote further research and development of scientific information extraction systems.