Kenneth Joseph


2020

pdf bib
When do Word Embeddings Accurately Reflect Surveys on our Beliefs About People?
Kenneth Joseph | Jonathan Morgan
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

Social biases are encoded in word embeddings. This presents a unique opportunity to study society historically and at scale, and a unique danger when embeddings are used in downstream applications. Here, we investigate the extent to which publicly-available word embeddings accurately reflect beliefs about certain kinds of people as measured via traditional survey methods. We find that biases found in word embeddings do, on average, closely mirror survey data across seventeen dimensions of social meaning. However, we also find that biases in embeddings are much more reflective of survey data for some dimensions of meaning (e.g. gender) than others (e.g. race), and that we can be highly confident that embedding-based measures reflect survey data only for the most salient biases.

2017

pdf bib
ConStance: Modeling Annotation Contexts to Improve Stance Classification
Kenneth Joseph | Lisa Friedland | William Hobbs | David Lazer | Oren Tsur
Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing

Manual annotations are a prerequisite for many applications of machine learning. However, weaknesses in the annotation process itself are easy to overlook. In particular, scholars often choose what information to give to annotators without examining these decisions empirically. For subjective tasks such as sentiment analysis, sarcasm, and stance detection, such choices can impact results. Here, for the task of political stance detection on Twitter, we show that providing too little context can result in noisy and uncertain annotations, whereas providing too strong a context may cause it to outweigh other signals. To characterize and reduce these biases, we develop ConStance, a general model for reasoning about annotations across information conditions. Given conflicting labels produced by multiple annotators seeing the same instances with different contexts, ConStance simultaneously estimates gold standard labels and also learns a classifier for new instances. We show that the classifier learned by ConStance outperforms a variety of baselines at predicting political stance, while the model’s interpretable parameters shed light on the effects of each context.

2016

pdf bib
Relating semantic similarity and semantic association to how humans label other people
Kenneth Joseph | Kathleen M. Carley
Proceedings of the First Workshop on NLP and Computational Social Science