Ke Wang


2020

pdf bib
Adversarial Text Generation via Sequence Contrast Discrimination
Ke Wang | Xiaojun Wan
Findings of the Association for Computational Linguistics: EMNLP 2020

In this paper, we propose a sequence contrast loss driven text generation framework, which learns the difference between real texts and generated texts and uses that difference. Specifically, our discriminator contains a discriminative sequence generator instead of a binary classifier, and measures the ‘relative realism’ of generated texts against real texts by making use of them simultaneously. Moreover, our generator uses discriminative sequences to directly improve itself, which not only replaces the gradient propagation process from the discriminator to the generator, but also avoids the time-consuming sampling process of estimating rewards in some previous methods. We conduct extensive experiments with various metrics, substantiating that our framework brings improvements in terms of training stability and the quality of generated texts.

pdf bib
Computer Assisted Translation with Neural Quality Estimation and Automatic Post-Editing
Ke Wang | Jiayi Wang | Niyu Ge | Yangbin Shi | Yu Zhao | Kai Fan
Findings of the Association for Computational Linguistics: EMNLP 2020

With the advent of neural machine translation, there has been a marked shift towards leveraging and consuming the machine translation results. However, the gap between machine translation systems and human translators needs to be manually closed by post-editing. In this paper, we propose an end-to-end deep learning framework of the quality estimation and automatic post-editing of the machine translation output. Our goal is to provide error correction suggestions and to further relieve the burden of human translators through an interpretable model. To imitate the behavior of human translators, we design three efficient delegation modules – quality estimation, generative post-editing, and atomic operation post-editing and construct a hierarchical model based on them. We examine this approach with the English–German dataset from WMT 2017 APE shared task and our experimental results can achieve the state-of-the-art performance. We also verify that the certified translators can significantly expedite their post-editing processing with our model in human evaluation.