Kaylee Burns


pdf bib
Evaluating Theory of Mind in Question Answering
Aida Nematzadeh | Kaylee Burns | Erin Grant | Alison Gopnik | Tom Griffiths
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing

We propose a new dataset for evaluating question answering models with respect to their capacity to reason about beliefs. Our tasks are inspired by theory-of-mind experiments that examine whether children are able to reason about the beliefs of others, in particular when those beliefs differ from reality. We evaluate a number of recent neural models with memory augmentation. We find that all fail on our tasks, which require keeping track of inconsistent states of the world; moreover, the models’ accuracy decreases notably when random sentences are introduced to the tasks at test.

pdf bib
Object Hallucination in Image Captioning
Anna Rohrbach | Lisa Anne Hendricks | Kaylee Burns | Trevor Darrell | Kate Saenko
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing

Despite continuously improving performance, contemporary image captioning models are prone to “hallucinating” objects that are not actually in a scene. One problem is that standard metrics only measure similarity to ground truth captions and may not fully capture image relevance. In this work, we propose a new image relevance metric to evaluate current models with veridical visual labels and assess their rate of object hallucination. We analyze how captioning model architectures and learning objectives contribute to object hallucination, explore when hallucination is likely due to image misclassification or language priors, and assess how well current sentence metrics capture object hallucination. We investigate these questions on the standard image captioning benchmark, MSCOCO, using a diverse set of models. Our analysis yields several interesting findings, including that models which score best on standard sentence metrics do not always have lower hallucination and that models which hallucinate more tend to make errors driven by language priors.

pdf bib
Exploiting Attention to Reveal Shortcomings in Memory Models
Kaylee Burns | Aida Nematzadeh | Erin Grant | Alison Gopnik | Tom Griffiths
Proceedings of the 2018 EMNLP Workshop BlackboxNLP: Analyzing and Interpreting Neural Networks for NLP

The decision making processes of deep networks are difficult to understand and while their accuracy often improves with increased architectural complexity, so too does their opacity. Practical use of machine learning models, especially for question and answering applications, demands a system that is interpretable. We analyze the attention of a memory network model to reconcile contradictory performance on a challenging question-answering dataset that is inspired by theory-of-mind experiments. We equate success on questions to task classification, which explains not only test-time failures but also how well the model generalizes to new training conditions.