Katsuhide Fujita


2020

pdf bib
Corpus for Modeling User Interactions in Online Persuasive Discussions
Ryo Egawa | Gaku Morio | Katsuhide Fujita
Proceedings of the 12th Language Resources and Evaluation Conference

Persuasions are common in online arguments such as discussion forums. To analyze persuasive strategies, it is important to understand how individuals construct posts and comments based on the semantics of the argumentative components. In addition to understanding how we construct arguments, understanding how a user post interacts with other posts (i.e., argumentative inter-post relation) still remains a challenge. Therefore, in this study, we developed a novel annotation scheme and corpus that capture both user-generated inner-post arguments and inter-post relations between users in ChangeMyView, a persuasive forum. Our corpus consists of arguments with 4612 elementary units (EUs) (i.e., propositions), 2713 EU-to-EU argumentative relations, and 605 inter-post argumentative relations in 115 threads. We analyzed the annotated corpus to identify the characteristics of online persuasive arguments, and the results revealed persuasive documents have more claims than non-persuasive ones and different interaction patterns among persuasive and non-persuasive documents. Our corpus can be used as a resource for analyzing persuasiveness and training an argument mining system to identify and extract argument structures. The annotated corpus and annotation guidelines have been made publicly available.

2019

pdf bib
Revealing and Predicting Online Persuasion Strategy with Elementary Units
Gaku Morio | Ryo Egawa | Katsuhide Fujita
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

In online arguments, identifying how users construct their arguments to persuade others is important in order to understand a persuasive strategy directly. However, existing research lacks empirical investigations on highly semantic aspects of elementary units (EUs), such as propositions for a persuasive online argument. Therefore, this paper focuses on a pilot study, revealing a persuasion strategy using EUs. Our contributions are as follows: (1) annotating five types of EUs in a persuasive forum, the so-called ChangeMyView, (2) revealing both intuitive and non-intuitive strategic insights for the persuasion by analyzing 4612 annotated EUs, and (3) proposing baseline neural models that identify the EU boundary and type. Our observations imply that EUs definitively characterize online persuasion strategies.

pdf bib
Annotating and Analyzing Semantic Role of Elementary Units and Relations in Online Persuasive Arguments
Ryo Egawa | Gaku Morio | Katsuhide Fujita
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics: Student Research Workshop

For analyzing online persuasions, one of the important goals is to semantically understand how people construct comments to persuade others. However, analyzing the semantic role of arguments for online persuasion has been less emphasized. Therefore, in this study, we propose a novel annotation scheme that captures the semantic role of arguments in a popular online persuasion forum, so-called ChangeMyView. Through this study, we have made the following contributions: (i) proposing a scheme that includes five types of elementary units (EUs) and two types of relations. (ii) annotating ChangeMyView which results in 4612 EUs and 2713 relations in 345 posts. (iii) analyzing the semantic role of persuasive arguments. Our analyses captured certain characteristic phenomena for online persuasion.

2018

pdf bib
End-to-End Argument Mining for Discussion Threads Based on Parallel Constrained Pointer Architecture
Gaku Morio | Katsuhide Fujita
Proceedings of the 5th Workshop on Argument Mining

Argument Mining (AM) is a relatively recent discipline, which concentrates on extracting claims or premises from discourses, and inferring their structures. However, many existing works do not consider micro-level AM studies on discussion threads sufficiently. In this paper, we tackle AM for discussion threads. Our main contributions are follows: (1) A novel combination scheme focusing on micro-level inner- and inter- post schemes for a discussion thread. (2) Annotation of large-scale civic discussion threads with the scheme. (3) Parallel constrained pointer architecture (PCPA), a novel end-to-end technique to discriminate sentence types, inner-post relations, and inter-post interactions simultaneously. The experimental results demonstrate that our proposed model shows better accuracy in terms of relations extraction, in comparison to existing state-of-the-art models.