Karen O’Connor


pdf bib
Overview of the Fifth Social Media Mining for Health Applications (#SMM4H) Shared Tasks at COLING 2020
Ari Klein | Ilseyar Alimova | Ivan Flores | Arjun Magge | Zulfat Miftahutdinov | Anne-Lyse Minard | Karen O’Connor | Abeed Sarker | Elena Tutubalina | Davy Weissenbacher | Graciela Gonzalez-Hernandez
Proceedings of the Fifth Social Media Mining for Health Applications Workshop & Shared Task

The vast amount of data on social media presents significant opportunities and challenges for utilizing it as a resource for health informatics. The fifth iteration of the Social Media Mining for Health Applications (#SMM4H) shared tasks sought to advance the use of Twitter data (tweets) for pharmacovigilance, toxicovigilance, and epidemiology of birth defects. In addition to re-runs of three tasks, #SMM4H 2020 included new tasks for detecting adverse effects of medications in French and Russian tweets, characterizing chatter related to prescription medication abuse, and detecting self reports of birth defect pregnancy outcomes. The five tasks required methods for binary classification, multi-class classification, and named entity recognition (NER). With 29 teams and a total of 130 system submissions, participation in the #SMM4H shared tasks continues to grow.


pdf bib
Overview of the Fourth Social Media Mining for Health (SMM4H) Shared Tasks at ACL 2019
Davy Weissenbacher | Abeed Sarker | Arjun Magge | Ashlynn Daughton | Karen O’Connor | Michael J. Paul | Graciela Gonzalez-Hernandez
Proceedings of the Fourth Social Media Mining for Health Applications (#SMM4H) Workshop & Shared Task

The number of users of social media continues to grow, with nearly half of adults worldwide and two-thirds of all American adults using social networking. Advances in automated data processing, machine learning and NLP present the possibility of utilizing this massive data source for biomedical and public health applications, if researchers address the methodological challenges unique to this media. We present the Social Media Mining for Health Shared Tasks collocated with the ACL at Florence in 2019, which address these challenges for health monitoring and surveillance, utilizing state of the art techniques for processing noisy, real-world, and substantially creative language expressions from social media users. For the fourth execution of this challenge, we proposed four different tasks. Task 1 asked participants to distinguish tweets reporting an adverse drug reaction (ADR) from those that do not. Task 2, a follow-up to Task 1, asked participants to identify the span of text in tweets reporting ADRs. Task 3 is an end-to-end task where the goal was to first detect tweets mentioning an ADR and then map the extracted colloquial mentions of ADRs in the tweets to their corresponding standard concept IDs in the MedDRA vocabulary. Finally, Task 4 asked participants to classify whether a tweet contains a personal mention of one’s health, a more general discussion of the health issue, or is an unrelated mention. A total of 34 teams from around the world registered and 19 teams from 12 countries submitted a system run. We summarize here the corpora for this challenge which are freely available at https://competitions.codalab.org/competitions/22521, and present an overview of the methods and the results of the competing systems.

pdf bib
SemEval-2019 Task 12: Toponym Resolution in Scientific Papers
Davy Weissenbacher | Arjun Magge | Karen O’Connor | Matthew Scotch | Graciela Gonzalez-Hernandez
Proceedings of the 13th International Workshop on Semantic Evaluation

We present the SemEval-2019 Task 12 which focuses on toponym resolution in scientific articles. Given an article from PubMed, the task consists of detecting mentions of names of places, or toponyms, and mapping the mentions to their corresponding entries in GeoNames.org, a database of geospatial locations. We proposed three subtasks. In Subtask 1, we asked participants to detect all toponyms in an article. In Subtask 2, given toponym mentions as input, we asked participants to disambiguate them by linking them to entries in GeoNames. In Subtask 3, we asked participants to perform both the detection and the disambiguation steps for all toponyms. A total of 29 teams registered, and 8 teams submitted a system run. We summarize the corpus and the tools created for the challenge. They are freely available at https://competitions.codalab.org/competitions/19948. We also analyze the methods, the results and the errors made by the competing systems with a focus on toponym disambiguation.


pdf bib
Dealing with Medication Non-Adherence Expressions in Twitter
Takeshi Onishi | Davy Weissenbacher | Ari Klein | Karen O’Connor | Graciela Gonzalez-Hernandez
Proceedings of the 2018 EMNLP Workshop SMM4H: The 3rd Social Media Mining for Health Applications Workshop & Shared Task

Through a semi-automatic analysis of tweets, we show that Twitter users not only express Medication Non-Adherence (MNA) in social media but also their reasons for not complying; further research is necessary to fully extract automatically and analyze this information, in order to facilitate the use of this data in epidemiological studies.


pdf bib
Detecting Personal Medication Intake in Twitter: An Annotated Corpus and Baseline Classification System
Ari Klein | Abeed Sarker | Masoud Rouhizadeh | Karen O’Connor | Graciela Gonzalez
BioNLP 2017

Social media sites (e.g., Twitter) have been used for surveillance of drug safety at the population level, but studies that focus on the effects of medications on specific sets of individuals have had to rely on other sources of data. Mining social media data for this in-formation would require the ability to distinguish indications of personal medication in-take in this media. Towards that end, this paper presents an annotated corpus that can be used to train machine learning systems to determine whether a tweet that mentions a medication indicates that the individual posting has taken that medication at a specific time. To demonstrate the utility of the corpus as a training set, we present baseline results of supervised classification.