Juntao Yu


pdf bib
Named Entity Recognition as Dependency Parsing
Juntao Yu | Bernd Bohnet | Massimo Poesio
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

Named Entity Recognition (NER) is a fundamental task in Natural Language Processing, concerned with identifying spans of text expressing references to entities. NER research is often focused on flat entities only (flat NER), ignoring the fact that entity references can be nested, as in [Bank of [China]] (Finkel and Manning, 2009). In this paper, we use ideas from graph-based dependency parsing to provide our model a global view on the input via a biaffine model (Dozat and Manning, 2017). The biaffine model scores pairs of start and end tokens in a sentence which we use to explore all spans, so that the model is able to predict named entities accurately. We show that the model works well for both nested and flat NER through evaluation on 8 corpora and achieving SoTA performance on all of them, with accuracy gains of up to 2.2 percentage points.

pdf bib
Neural Mention Detection
Juntao Yu | Bernd Bohnet | Massimo Poesio
Proceedings of the 12th Language Resources and Evaluation Conference

Mention detection is an important preprocessing step for annotation and interpretation in applications such as NER and coreference resolution, but few stand-alone neural models have been proposed able to handle the full range of mentions. In this work, we propose and compare three neural network-based approaches to mention detection. The first approach is based on the mention detection part of a state of the art coreference resolution system; the second uses ELMO embeddings together with a bidirectional LSTM and a biaffine classifier; the third approach uses the recently introduced BERT model. Our best model (using a biaffine classifier) achieves gains of up to 1.8 percentage points on mention recall when compared with a strong baseline in a HIGH RECALL coreference annotation setting. The same model achieves improvements of up to 5.3 and 6.2 p.p. when compared with the best-reported mention detection F1 on the CONLL and CRAC coreference data sets respectively in a HIGH F1 annotation setting. We then evaluate our models for coreference resolution by using mentions predicted by our best model in start-of-the-art coreference systems. The enhanced model achieved absolute improvements of up to 1.7 and 0.7 p.p. when compared with our strong baseline systems (pipeline system and end-to-end system) respectively. For nested NER, the evaluation of our model on the GENIA corpora shows that our model matches or outperforms state-of-the-art models despite not being specifically designed for this task.

pdf bib
A Cluster Ranking Model for Full Anaphora Resolution
Juntao Yu | Alexandra Uma | Massimo Poesio
Proceedings of the 12th Language Resources and Evaluation Conference

Anaphora resolution (coreference) systems designed for the CONLL 2012 dataset typically cannot handle key aspects of the full anaphora resolution task such as the identification of singletons and of certain types of non-referring expressions (e.g., expletives), as these aspects are not annotated in that corpus. However, the recently released dataset for the CRAC 2018 Shared Task can now be used for that purpose. In this paper, we introduce an architecture to simultaneously identify non-referring expressions (including expletives, predicative s, and other types) and build coreference chains, including singletons. Our cluster-ranking system uses an attention mechanism to determine the relative importance of the mentions in the same cluster. Additional classifiers are used to identify singletons and non-referring markables. Our contributions are as follows. First all, we report the first result on the CRAC data using system mentions; our result is 5.8% better than the shared task baseline system, which used gold mentions. Second, we demonstrate that the availability of singleton clusters and non-referring expressions can lead to substantially improved performance on non-singleton clusters as well. Third, we show that despite our model not being designed specifically for the CONLL data, it achieves a score equivalent to that of the state-of-the-art system by Kantor and Globerson (2019) on that dataset.

pdf bib
Neural Coreference Resolution for Arabic
Abdulrahman Aloraini | Juntao Yu | Massimo Poesio
Proceedings of the Third Workshop on Computational Models of Reference, Anaphora and Coreference

No neural coreference resolver for Arabic exists, in fact we are not aware of any learning-based coreference resolver for Arabic since (Björkelund and Kuhn, 2014). In this paper, we introduce a coreference resolution system for Arabic based on Lee et al’s end-to-end architecture combined with the Arabic version of bert and an external mention detector. As far as we know, this is the first neural coreference resolution system aimed specifically to Arabic, and it substantially outperforms the existing state-of-the-art on OntoNotes 5.0 with a gain of 15.2 points conll F1. We also discuss the current limitations of the task for Arabic and possible approaches that can tackle these challenges.

pdf bib
Multitask Learning-Based Neural Bridging Reference Resolution
Juntao Yu | Massimo Poesio
Proceedings of the 28th International Conference on Computational Linguistics

We propose a multi task learning-based neural model for resolving bridging references tackling two key challenges. The first challenge is the lack of large corpora annotated with bridging references. To address this, we use multi-task learning to help bridging reference resolution with coreference resolution. We show that substantial improvements of up to 8 p.p. can be achieved on full bridging resolution with this architecture. The second challenge is the different definitions of bridging used in different corpora, meaning that hand-coded systems or systems using special features designed for one corpus do not work well with other corpora. Our neural model only uses a small number of corpus independent features, thus can be applied to different corpora. Evaluations with very different bridging corpora (ARRAU, ISNOTES, BASHI and SCICORP) suggest that our architecture works equally well on all corpora, and achieves the SoTA results on full bridging resolution for all corpora, outperforming the best reported results by up to 36.3 p.p..

pdf bib
Free the Plural: Unrestricted Split-Antecedent Anaphora Resolution
Juntao Yu | Nafise Sadat Moosavi | Silviu Paun | Massimo Poesio
Proceedings of the 28th International Conference on Computational Linguistics

Now that the performance of coreference resolvers on the simpler forms of anaphoric reference has greatly improved, more attention is devoted to more complex aspects of anaphora. One limitation of virtually all coreference resolution models is the focus on single-antecedent anaphors. Plural anaphors with multiple antecedents-so-called split-antecedent anaphors (as in John met Mary. They went to the movies) have not been widely studied, because they are not annotated in ONTONOTES and are relatively infrequent in other corpora. In this paper, we introduce the first model for unrestricted resolution of split-antecedent anaphors. We start with a strong baseline enhanced by BERT embeddings, and show that we can substantially improve its performance by addressing the sparsity issue. To do this, we experiment with auxiliary corpora where split-antecedent anaphors were annotated by the crowd, and with transfer learning models using element-of bridging references and single-antecedent coreference as auxiliary tasks. Evaluation on the gold annotated ARRAU corpus shows that the out best model uses a combination of three auxiliary corpora achieved F1 scores of 70% and 43.6% when evaluated in a lenient and strict setting, respectively, i.e., 11 and 21 percentage points gain when compared with our baseline.


pdf bib
Crowdsourcing and Aggregating Nested Markable Annotations
Chris Madge | Juntao Yu | Jon Chamberlain | Udo Kruschwitz | Silviu Paun | Massimo Poesio
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

One of the key steps in language resource creation is the identification of the text segments to be annotated, or markables, which depending on the task may vary from nominal chunks for named entity resolution to (potentially nested) noun phrases in coreference resolution (or mentions) to larger text segments in text segmentation. Markable identification is typically carried out semi-automatically, by running a markable identifier and correcting its output by hand–which is increasingly done via annotators recruited through crowdsourcing and aggregating their responses. In this paper, we present a method for identifying markables for coreference annotation that combines high-performance automatic markable detectors with checking with a Game-With-A-Purpose (GWAP) and aggregation using a Bayesian annotation model. The method was evaluated both on news data and data from a variety of other genres and results in an improvement on F1 of mention boundaries of over seven percentage points when compared with a state-of-the-art, domain-independent automatic mention detector, and almost three points over an in-domain mention detector. One of the key contributions of our proposal is its applicability to the case in which markables are nested, as is the case with coreference markables; but the GWAP and several of the proposed markable detectors are task and language-independent and are thus applicable to a variety of other annotation scenarios.

pdf bib
A Crowdsourced Corpus of Multiple Judgments and Disagreement on Anaphoric Interpretation
Massimo Poesio | Jon Chamberlain | Silviu Paun | Juntao Yu | Alexandra Uma | Udo Kruschwitz
Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)

We present a corpus of anaphoric information (coreference) crowdsourced through a game-with-a-purpose. The corpus, containing annotations for about 108,000 markables, is one of the largest corpora for coreference for English, and one of the largest crowdsourced NLP corpora, but its main feature is the large number of judgments per markable: 20 on average, and over 2.2M in total. This characteristic makes the corpus a unique resource for the study of disagreements on anaphoric interpretation. A second distinctive feature is its rich annotation scheme, covering singletons, expletives, and split-antecedent plurals. Finally, the corpus also comes with labels inferred using a recently proposed probabilistic model of annotation for coreference. The labels are of high quality and make it possible to successfully train a state of the art coreference resolver, including training on singletons and non-referring expressions. The annotation model can also result in more than one label, or no label, being proposed for a markable, thus serving as a baseline method for automatically identifying ambiguous markables. A preliminary analysis of the results is presented.


pdf bib
A Probabilistic Annotation Model for Crowdsourcing Coreference
Silviu Paun | Jon Chamberlain | Udo Kruschwitz | Juntao Yu | Massimo Poesio
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing

The availability of large scale annotated corpora for coreference is essential to the development of the field. However, creating resources at the required scale via expert annotation would be too expensive. Crowdsourcing has been proposed as an alternative; but this approach has not been widely used for coreference. This paper addresses one crucial hurdle on the way to make this possible, by introducing a new model of annotation for aggregating crowdsourced anaphoric annotations. The model is evaluated along three dimensions: the accuracy of the inferred mention pairs, the quality of the post-hoc constructed silver chains, and the viability of using the silver chains as an alternative to the expert-annotated chains in training a state of the art coreference system. The results suggest that our model can extract from crowdsourced annotations coreference chains of comparable quality to those obtained with expert annotation.

pdf bib
Anaphora Resolution with the ARRAU Corpus
Massimo Poesio | Yulia Grishina | Varada Kolhatkar | Nafise Moosavi | Ina Roesiger | Adam Roussel | Fabian Simonjetz | Alexandra Uma | Olga Uryupina | Juntao Yu | Heike Zinsmeister
Proceedings of the First Workshop on Computational Models of Reference, Anaphora and Coreference

The ARRAU corpus is an anaphorically annotated corpus of English providing rich linguistic information about anaphora resolution. The most distinctive feature of the corpus is the annotation of a wide range of anaphoric relations, including bridging references and discourse deixis in addition to identity (coreference). Other distinctive features include treating all NPs as markables, including non-referring NPs; and the annotation of a variety of morphosyntactic and semantic mention and entity attributes, including the genericity status of the entities referred to by markables. The corpus however has not been extensively used for anaphora resolution research so far. In this paper, we discuss three datasets extracted from the ARRAU corpus to support the three subtasks of the CRAC 2018 Shared Task–identity anaphora resolution over ARRAU-style markables, bridging references resolution, and discourse deixis; the evaluation scripts assessing system performance on those datasets; and preliminary results on these three tasks that may serve as baseline for subsequent research in these phenomena.


pdf bib
Dependency Language Models for Transition-based Dependency Parsing
Juntao Yu | Bernd Bohnet
Proceedings of the 15th International Conference on Parsing Technologies

In this paper, we present an approach to improve the accuracy of a strong transition-based dependency parser by exploiting dependency language models that are extracted from a large parsed corpus. We integrated a small number of features based on the dependency language models into the parser. To demonstrate the effectiveness of the proposed approach, we evaluate our parser on standard English and Chinese data where the base parser could achieve competitive accuracy scores. Our enhanced parser achieved state-of-the-art accuracy on Chinese data and competitive results on English data. We gained a large absolute improvement of one point (UAS) on Chinese and 0.5 points for English.


pdf bib
Exploring Confidence-based Self-training for Multilingual Dependency Parsing in an Under-Resourced Language Scenario
Juntao Yu | Bernd Bohnet
Proceedings of the Third International Conference on Dependency Linguistics (Depling 2015)

pdf bib
Domain Adaptation for Dependency Parsing via Self-Training
Juntao Yu | Mohab Elkaref | Bernd Bohnet
Proceedings of the 14th International Conference on Parsing Technologies


pdf bib
Exploring Options for Fast Domain Adaptation of Dependency Parsers
Viktor Pekar | Juntao Yu | Mohab El-karef | Bernd Bohnet
Proceedings of the First Joint Workshop on Statistical Parsing of Morphologically Rich Languages and Syntactic Analysis of Non-Canonical Languages