Junlan Feng


2020

pdf bib
Meta-Reinforced Multi-Domain State Generator for Dialogue Systems
Yi Huang | Junlan Feng | Min Hu | Xiaoting Wu | Xiaoyu Du | Shuo Ma
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

A Dialogue State Tracker (DST) is a core component of a modular task-oriented dialogue system. Tremendous progress has been made in recent years. However, the major challenges remain. The state-of-the-art accuracy for DST is below 50% for a multi-domain dialogue task. A learnable DST for any new domain requires a large amount of labeled in-domain data and training from scratch. In this paper, we propose a Meta-Reinforced Multi-Domain State Generator (MERET). Our first contribution is to improve the DST accuracy. We enhance a neural model based DST generator with a reward manager, which is built on policy gradient reinforcement learning (RL) to fine-tune the generator. With this change, we are able to improve the joint accuracy of DST from 48.79% to 50.91% on the MultiWOZ corpus. Second, we explore to train a DST meta-learning model with a few domains as source domains and a new domain as target domain. We apply the model-agnostic meta-learning algorithm (MAML) to DST and the obtained meta-learning model is used for new domain adaptation. Our experimental results show this solution is able to outperform the traditional training approach with extremely less training data in target domain.

pdf bib
A structure-enhanced graph convolutional network for sentiment analysis
Fanyu Meng | Junlan Feng | Danping Yin | Si Chen | Min Hu
Findings of the Association for Computational Linguistics: EMNLP 2020

Syntactic information is essential for both sentiment analysis(SA) and aspect-based sentiment analysis(ABSA). Previous work has already achieved great progress utilizing Graph Convolutional Network(GCN) over dependency tree of a sentence. However, these models do not fully exploit the syntactic information obtained from dependency parsing such as the diversified types of dependency relations. The message passing process of GCN should be distinguished based on these syntactic information.To tackle this problem, we design a novel weighted graph convolutional network(WGCN) which can exploit rich syntactic information based on the feature combination. Furthermore, we utilize BERT instead of Bi-LSTM to generate contextualized representations as inputs for GCN and present an alignment method to keep word-level dependencies consistent with wordpiece unit of BERT. With our proposal, we are able to improve the state-of-the-art on four ABSA tasks out of six and two SA tasks out of three.

pdf bib
Towards Low-Resource Semi-Supervised Dialogue Generation with Meta-Learning
Yi Huang | Junlan Feng | Shuo Ma | Xiaoyu Du | Xiaoting Wu
Findings of the Association for Computational Linguistics: EMNLP 2020

In this paper, we propose a meta-learning based semi-supervised explicit dialogue state tracker (SEDST) for neural dialogue generation, denoted as MEDST. Our main motivation is to further bridge the chasm between the need for high accuracy dialogue state tracker and the common reality that only scarce annotated data is available for most real-life dialogue tasks. Specifically, MEDST has two core steps: meta-training with adequate unlabelled data in an automatic way and meta-testing with a few annotated data by supervised learning. In particular, we enhance SEDST via entropy regularization, and investigate semi-supervised learning frameworks based on model-agnostic meta-learning (MAML) that are able to reduce the amount of required intermediate state labelling. We find that by leveraging un-annotated data in meta-way instead, the amount of dialogue state annotations can be reduced below 10% while maintaining equivalent system performance. Experimental results show MEDST outperforms SEDST substantially by 18.7% joint goal accuracy and 14.3% entity match rate on the KVRET corpus with 2% labelled data in semi-supervision.

pdf bib
A Probabilistic End-To-End Task-Oriented Dialog Model with Latent Belief States towards Semi-Supervised Learning
Yichi Zhang | Zhijian Ou | Min Hu | Junlan Feng
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

Structured belief states are crucial for user goal tracking and database query in task-oriented dialog systems. However, training belief trackers often requires expensive turn-level annotations of every user utterance. In this paper we aim at alleviating the reliance on belief state labels in building end-to-end dialog systems, by leveraging unlabeled dialog data towards semi-supervised learning. We propose a probabilistic dialog model, called the LAtent BElief State (LABES) model, where belief states are represented as discrete latent variables and jointly modeled with system responses given user inputs. Such latent variable modeling enables us to develop semi-supervised learning under the principled variational learning framework. Furthermore, we introduce LABES-S2S, which is a copy-augmented Seq2Seq model instantiation of LABES. In supervised experiments, LABES-S2S obtains strong results on three benchmark datasets of different scales. In utilizing unlabeled dialog data, semi-supervised LABES-S2S significantly outperforms both supervised-only and semi-supervised baselines. Remarkably, we can reduce the annotation demands to 50% without performance loss on MultiWOZ.

2010

pdf bib
Robust Sentiment Detection on Twitter from Biased and Noisy Data
Luciano Barbosa | Junlan Feng
Coling 2010: Posters

2009

pdf bib
Effects of Word Confusion Networks on Voice Search
Junlan Feng | Srinivas Bangalore
Proceedings of the 12th Conference of the European Chapter of the ACL (EACL 2009)

2006

pdf bib
A Data Driven Approach to Relevancy Recognition for Contextual Question Answering
Fan Yang | Junlan Feng | Giuseppe Di Fabbrizio
Proceedings of the Interactive Question Answering Workshop at HLT-NAACL 2006