Julia Bettinger


pdf bib
A Domain-Specific Dataset of Difficulty Ratings for German Noun Compounds in the Domains DIY, Cooking and Automotive
Julia Bettinger | Anna Hätty | Michael Dorna | Sabine Schulte im Walde
Proceedings of the 12th Language Resources and Evaluation Conference

We present a dataset with difficulty ratings for 1,030 German closed noun compounds extracted from domain-specific texts for do-it-ourself (DIY), cooking and automotive. The dataset includes two-part compounds for cooking and DIY, and two- to four-part compounds for automotive. The compounds were identified in text using the Simple Compound Splitter (Weller-Di Marco, 2017); a subset was filtered and balanced for frequency and productivity criteria as basis for manual annotation and fine-grained interpretation. This study presents the creation, the final dataset with ratings from 20 annotators and statistics over the dataset, to provide insight into the perception of domain-specific term difficulty. It is particularly striking that annotators agree on a coarse, binary distinction between easy vs. difficult domain-specific compounds but that a more fine grained distinction of difficulty is not meaningful. We finally discuss the challenges of an annotation for difficulty, which includes both the task description as well as the selection of the data basis.


pdf bib
Acquisition of semantic relations between terms: how far can we get with standard NLP tools?
Ina Roesiger | Julia Bettinger | Johannes Schäfer | Michael Dorna | Ulrich Heid
Proceedings of the 5th International Workshop on Computational Terminology (Computerm2016)

The extraction of data exemplifying relations between terms can make use, at least to a large extent, of techniques that are similar to those used in standard hybrid term candidate extraction, namely basic corpus analysis tools (e.g. tagging, lemmatization, parsing), as well as morphological analysis of complex words (compounds and derived items). In this article, we discuss the use of such techniques for the extraction of raw material for a description of relations between terms, and we provide internal evaluation data for the devices developed. We claim that user-generated content is a rich source of term variation through paraphrasing and reformulation, and that these provide relational data at the same time as term variants. Germanic languages with their rich word formation morphology may be particularly good candidates for the approach advocated here.