Juan Soler-Company

Also published as: Juan Soler Company


2019

pdf bib
A Hierarchically-Labeled Portuguese Hate Speech Dataset
Paula Fortuna | João Rocha da Silva | Juan Soler-Company | Leo Wanner | Sérgio Nunes
Proceedings of the Third Workshop on Abusive Language Online

Over the past years, the amount of online offensive speech has been growing steadily. To successfully cope with it, machine learning are applied. However, ML-based techniques require sufficiently large annotated datasets. In the last years, different datasets were published, mainly for English. In this paper, we present a new dataset for Portuguese, which has not been in focus so far. The dataset is composed of 5,668 tweets. For its annotation, we defined two different schemes used by annotators with different levels of expertise. Firstly, non-experts annotated the tweets with binary labels (‘hate’ vs. ‘no-hate’). Secondly, expert annotators classified the tweets following a fine-grained hierarchical multiple label scheme with 81 hate speech categories in total. The inter-annotator agreement varied from category to category, which reflects the insight that some types of hate speech are more subtle than others and that their detection depends on personal perception. This hierarchical annotation scheme is the main contribution of the presented work, as it facilitates the identification of different types of hate speech and their intersections. To demonstrate the usefulness of our dataset, we carried a baseline classification experiment with pre-trained word embeddings and LSTM on the binary classified data, with a state-of-the-art outcome.

pdf bib
Stop PropagHate at SemEval-2019 Tasks 5 and 6: Are abusive language classification results reproducible?
Paula Fortuna | Juan Soler-Company | Sérgio Nunes
Proceedings of the 13th International Workshop on Semantic Evaluation

This paper summarizes the participation of Stop PropagHate team at SemEval 2019. Our approach is based on replicating one of the most relevant works on the literature, using word embeddings and LSTM. After circumventing some of the problems of the original code, we found poor results when applying it to the HatEval contest (F1=0.45). We think this is due mainly to inconsistencies in the data of this contest. Finally, for the OffensEval the classifier performed well (F1=0.74), proving to have a better performance for offense detection than for hate speech.

2017

pdf bib
On the Relevance of Syntactic and Discourse Features for Author Profiling and Identification
Juan Soler-Company | Leo Wanner
Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 2, Short Papers

The majority of approaches to author profiling and author identification focus mainly on lexical features, i.e., on the content of a text. We argue that syntactic and discourse features play a significantly more prominent role than they were given in the past. We show that they achieve state-of-the-art performance in author and gender identification on a literary corpus while keeping the feature set small: the used feature set is composed of only 188 features and still outperforms the winner of the PAN 2014 shared task on author verification in the literary genre.

pdf bib
Towards the Understanding of Gaming Audiences by Modeling Twitch Emotes
Francesco Barbieri | Luis Espinosa-Anke | Miguel Ballesteros | Juan Soler-Company | Horacio Saggion
Proceedings of the 3rd Workshop on Noisy User-generated Text

Videogame streaming platforms have become a paramount example of noisy user-generated text. These are websites where gaming is broadcasted, and allows interaction with viewers via integrated chatrooms. Probably the best known platform of this kind is Twitch, which has more than 100 million monthly viewers. Despite these numbers, and unlike other platforms featuring short messages (e.g. Twitter), Twitch has not received much attention from the Natural Language Processing community. In this paper we aim at bridging this gap by proposing two important tasks specific to the Twitch platform, namely (1) Emote prediction; and (2) Trolling detection. In our experiments, we evaluate three models: a BOW baseline, a logistic supervised classifiers based on word embeddings, and a bidirectional long short-term memory recurrent neural network (LSTM). Our results show that the LSTM model outperforms the other two models, where explicit features with proven effectiveness for similar tasks were encoded.

2015

pdf bib
Visualizing Deep-Syntactic Parser Output
Juan Soler-Company | Miguel Ballesteros | Bernd Bohnet | Simon Mille | Leo Wanner
Proceedings of the 2015 Conference of the North American Chapter of the Association for Computational Linguistics: Demonstrations

2014

pdf bib
How to Use less Features and Reach Better Performance in Author Gender Identification
Juan Soler Company | Leo Wanner
Proceedings of the Ninth International Conference on Language Resources and Evaluation (LREC'14)

Over the last years, author profiling in general and author gender identification in particular have become a popular research area due to their potential attractive applications that range from forensic investigations to online marketing studies. However, nearly all state-of-the-art works in the area still very much depend on the datasets they were trained and tested on, since they heavily draw on content features, mostly a large number of recurrent words or combinations of words extracted from the training sets. We show that using a small number of features that mainly depend on the structure of the texts we can outperform other approaches that depend mainly on the content of the texts and that use a huge number of features in the process of identifying if the author of a text is a man or a woman. Our system has been tested against a dataset constructed for our work as well as against two datasets that were previously used in other papers.