Jonathan Kobbe


2020

pdf bib
Unsupervised stance detection for arguments from consequences
Jonathan Kobbe | Ioana Hulpuș | Heiner Stuckenschmidt
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

Social media platforms have become an essential venue for online deliberation where users discuss arguments, debate, and form opinions. In this paper, we propose an unsupervised method to detect the stance of argumentative claims with respect to a topic. Most related work focuses on topic-specific supervised models that need to be trained for every emergent debate topic. To address this limitation, we propose a topic independent approach that focuses on a frequently encountered class of arguments, specifically, on arguments from consequences. We do this by extracting the effects that claims refer to, and proposing a means for inferring if the effect is a good or bad consequence. Our experiments provide promising results that are comparable to, and in particular regards even outperform BERT. Furthermore, we publish a novel dataset of arguments relating to consequences, annotated with Amazon Mechanical Turk.

pdf bib
Exploring Morality in Argumentation
Jonathan Kobbe | Ines Rehbein | Ioana Hulpuș | Heiner Stuckenschmidt
Proceedings of the 7th Workshop on Argument Mining

Sentiment and stance are two important concepts for the analysis of arguments. We propose to add another perspective to the analysis, namely moral sentiment. We argue that moral values are crucial for ideological debates and can thus add useful information for argument mining. In the paper, we present different models for automatically predicting moral sentiment in debates and evaluate them on a manually annotated testset. We then apply our models to investigate how moral values in arguments relate to argument quality, stance and audience reactions.

pdf bib
Knowledge Graphs meet Moral Values
Ioana Hulpuș | Jonathan Kobbe | Heiner Stuckenschmidt | Graeme Hirst
Proceedings of the Ninth Joint Conference on Lexical and Computational Semantics

Operationalizing morality is crucial for understanding multiple aspects of society that have moral values at their core – such as riots, mobilizing movements, public debates, etc. Moral Foundations Theory (MFT) has become one of the most adopted theories of morality partly due to its accompanying lexicon, the Moral Foundation Dictionary (MFD), which offers a base for computationally dealing with morality. In this work, we exploit the MFD in a novel direction by investigating how well moral values are captured by KGs. We explore three widely used KGs, and provide concept-level analogues for the MFD. Furthermore, we propose several Personalized PageRank variations in order to score all the concepts and entities in the KGs with respect to their relevance to the different moral values. Our promising results help to progress the operationalization of morality in both NLP and KG communities.