Jitao Xu


2020

pdf bib
Boosting Neural Machine Translation with Similar Translations
Jitao Xu | Josep Crego | Jean Senellart
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

This paper explores data augmentation methods for training Neural Machine Translation to make use of similar translations, in a comparable way a human translator employs fuzzy matches. In particular, we show how we can simply present the neural model with information of both source and target sides of the fuzzy matches, we also extend the similarity to include semantically related translations retrieved using sentence distributed representations. We show that translations based on fuzzy matching provide the model with “copy” information while translations based on embedding similarities tend to extend the translation “context”. Results indicate that the effect from both similar sentences are adding up to further boost accuracy, combine naturally with model fine-tuning and are providing dynamic adaptation for unseen translation pairs. Tests on multiple data sets and domains show consistent accuracy improvements. To foster research around these techniques, we also release an Open-Source toolkit with efficient and flexible fuzzy-match implementation.

2019

pdf bib
SYSTRAN @ WAT 2019: Russian-Japanese News Commentary task
Jitao Xu | TuAnh Nguyen | MinhQuang Pham | Josep Crego | Jean Senellart
Proceedings of the 6th Workshop on Asian Translation

This paper describes Systran’s submissions to WAT 2019 Russian-Japanese News Commentary task. A challenging translation task due to the extremely low resources available and the distance of the language pair. We have used the neural Transformer architecture learned over the provided resources and we carried out synthetic data generation experiments which aim at alleviating the data scarcity problem. Results indicate the suitability of the data augmentation experiments, enabling our systems to rank first according to automatic evaluations.