Jiong Cai


pdf bib
An Empirical Comparison of Unsupervised Constituency Parsing Methods
Jun Li | Yifan Cao | Jiong Cai | Yong Jiang | Kewei Tu
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

Unsupervised constituency parsing aims to learn a constituency parser from a training corpus without parse tree annotations. While many methods have been proposed to tackle the problem, including statistical and neural methods, their experimental results are often not directly comparable due to discrepancies in datasets, data preprocessing, lexicalization, and evaluation metrics. In this paper, we first examine experimental settings used in previous work and propose to standardize the settings for better comparability between methods. We then empirically compare several existing methods, including decade-old and newly proposed ones, under the standardized settings on English and Japanese, two languages with different branching tendencies. We find that recent models do not show a clear advantage over decade-old models in our experiments. We hope our work can provide new insights into existing methods and facilitate future empirical evaluation of unsupervised constituency parsing.

pdf bib
Semi-Supervised Semantic Dependency Parsing Using CRF Autoencoders
Zixia Jia | Youmi Ma | Jiong Cai | Kewei Tu
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

Semantic dependency parsing, which aims to find rich bi-lexical relationships, allows words to have multiple dependency heads, resulting in graph-structured representations. We propose an approach to semi-supervised learning of semantic dependency parsers based on the CRF autoencoder framework. Our encoder is a discriminative neural semantic dependency parser that predicts the latent parse graph of the input sentence. Our decoder is a generative neural model that reconstructs the input sentence conditioned on the latent parse graph. Our model is arc-factored and therefore parsing and learning are both tractable. Experiments show our model achieves significant and consistent improvement over the supervised baseline.

pdf bib
Deep Inside-outside Recursive Autoencoder with All-span Objective
Ruyue Hong | Jiong Cai | Kewei Tu
Proceedings of the 28th International Conference on Computational Linguistics

Deep inside-outside recursive autoencoder (DIORA) is a neural-based model designed for unsupervised constituency parsing. During its forward computation, it provides phrase and contextual representations for all spans in the input sentence. By utilizing the contextual representation of each leaf-level span, the span of length 1, to reconstruct the word inside the span, the model is trained without labeled data. In this work, we extend the training objective of DIORA by making use of all spans instead of only leaf-level spans. We test our new training objective on datasets of two languages: English and Japanese, and empirically show that our method achieves improvement in parsing accuracy over the original DIORA.


pdf bib
CRF Autoencoder for Unsupervised Dependency Parsing
Jiong Cai | Yong Jiang | Kewei Tu
Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing

Unsupervised dependency parsing, which tries to discover linguistic dependency structures from unannotated data, is a very challenging task. Almost all previous work on this task focuses on learning generative models. In this paper, we develop an unsupervised dependency parsing model based on the CRF autoencoder. The encoder part of our model is discriminative and globally normalized which allows us to use rich features as well as universal linguistic priors. We propose an exact algorithm for parsing as well as a tractable learning algorithm. We evaluated the performance of our model on eight multilingual treebanks and found that our model achieved comparable performance with state-of-the-art approaches.