Jinnan Yang


pdf bib
YNU-HPCC at IJCNLP-2017 Task 1: Chinese Grammatical Error Diagnosis Using a Bi-directional LSTM-CRF Model
Quanlei Liao | Jin Wang | Jinnan Yang | Xuejie Zhang
Proceedings of the IJCNLP 2017, Shared Tasks

Building a system to detect Chinese grammatical errors is a challenge for natural-language processing researchers. As Chinese learners are increasing, developing such a system can help them study Chinese more easily. This paper introduces a bi-directional long short-term memory (BiLSTM) - conditional random field (CRF) model to produce the sequences that indicate an error type for every position of a sentence, since we regard Chinese grammatical error diagnosis (CGED) as a sequence-labeling problem.


pdf bib
Chinese Grammatical Error Diagnosis Using Single Word Embedding
Jinnan Yang | Bo Peng | Jin Wang | Jixian Zhang | Xuejie Zhang
Proceedings of the 3rd Workshop on Natural Language Processing Techniques for Educational Applications (NLPTEA2016)

Abstract Automatic grammatical error detection for Chinese has been a big challenge for NLP researchers. Due to the formal and strict grammar rules in Chinese, it is hard for foreign students to master Chinese. A computer-assisted learning tool which can automatically detect and correct Chinese grammatical errors is necessary for those foreign students. Some of the previous works have sought to identify Chinese grammatical errors using template- and learning-based methods. In contrast, this study introduced convolutional neural network (CNN) and long-short term memory (LSTM) for the shared task of Chinese Grammatical Error Diagnosis (CGED). Different from traditional word-based embedding, single word embedding was used as input of CNN and LSTM. The proposed single word embedding can capture both semantic and syntactic information to detect those four type grammatical error. In experimental evaluation, the recall and f1-score of our submitted results Run1 of the TOCFL testing data ranked the fourth place in all submissions in detection-level.