Jinlan Fu


2020

pdf bib
RethinkCWS: Is Chinese Word Segmentation a Solved Task?
Jinlan Fu | Pengfei Liu | Qi Zhang | Xuanjing Huang
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

The performance of the Chinese Word Segmentation (CWS) systems has gradually reached a plateau with the rapid development of deep neural networks, especially the successful use of large pre-trained models. In this paper, we take stock of what we have achieved and rethink what’s left in the CWS task. Methodologically, we propose a fine-grained evaluation for existing CWS systems, which not only allows us to diagnose the strengths and weaknesses of existing models (under the in-dataset setting), but enables us to quantify the discrepancy between different criterion and alleviate the negative transfer problem when doing multi-criteria learning. Strategically, despite not aiming to propose a novel model in this paper, our comprehensive experiments on eight models and seven datasets, as well as thorough analysis, could search for some promising direction for future research. We make all codes publicly available and release an interface that can quickly evaluate and diagnose user’s models: https://github.com/neulab/InterpretEval

pdf bib
Interpretable Multi-dataset Evaluation for Named Entity Recognition
Jinlan Fu | Pengfei Liu | Graham Neubig
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

With the proliferation of models for natural language processing tasks, it is even harder to understand the differences between models and their relative merits. Simply looking at differences between holistic metrics such as accuracy, BLEU, or F1 does not tell us why or how particular methods perform differently and how diverse datasets influence the model design choices. In this paper, we present a general methodology for interpretable evaluation for the named entity recognition (NER) task. The proposed evaluation method enables us to interpret the differences in models and datasets, as well as the interplay between them, identifying the strengths and weaknesses of current systems. By making our analysis tool available, we make it easy for future researchers to run similar analyses and drive progress in this area: https://github.com/neulab/InterpretEval

pdf bib
A Knowledge-Aware Sequence-to-Tree Network for Math Word Problem Solving
Qinzhuo Wu | Qi Zhang | Jinlan Fu | Xuanjing Huang
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

With the advancements in natural language processing tasks, math word problem solving has received increasing attention. Previous methods have achieved promising results but ignore background common-sense knowledge not directly provided by the problem. In addition, during generation, they focus on local features while neglecting global information. To incorporate external knowledge and global expression information, we propose a novel knowledge-aware sequence-to-tree (KA-S2T) network in which the entities in the problem sequences and their categories are modeled as an entity graph. Based on this entity graph, a graph attention network is used to capture knowledge-aware problem representations. Further, we use a tree-structured decoder with a state aggregation mechanism to capture the long-distance dependency and global expression information. Experimental results on the Math23K dataset revealed that the KA-S2T model can achieve better performance than previously reported best results.

2019

pdf bib
A Lexicon-Based Graph Neural Network for Chinese NER
Tao Gui | Yicheng Zou | Qi Zhang | Minlong Peng | Jinlan Fu | Zhongyu Wei | Xuanjing Huang
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

Recurrent neural networks (RNN) used for Chinese named entity recognition (NER) that sequentially track character and word information have achieved great success. However, the characteristic of chain structure and the lack of global semantics determine that RNN-based models are vulnerable to word ambiguities. In this work, we try to alleviate this problem by introducing a lexicon-based graph neural network with global semantics, in which lexicon knowledge is used to connect characters to capture the local composition, while a global relay node can capture global sentence semantics and long-range dependency. Based on the multiple graph-based interactions among characters, potential words, and the whole-sentence semantics, word ambiguities can be effectively tackled. Experiments on four NER datasets show that the proposed model achieves significant improvements against other baseline models.

pdf bib
Distantly Supervised Named Entity Recognition using Positive-Unlabeled Learning
Minlong Peng | Xiaoyu Xing | Qi Zhang | Jinlan Fu | Xuanjing Huang
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

In this work, we explore the way to perform named entity recognition (NER) using only unlabeled data and named entity dictionaries. To this end, we formulate the task as a positive-unlabeled (PU) learning problem and accordingly propose a novel PU learning algorithm to perform the task. We prove that the proposed algorithm can unbiasedly and consistently estimate the task loss as if there is fully labeled data. A key feature of the proposed method is that it does not require the dictionaries to label every entity within a sentence, and it even does not require the dictionaries to label all of the words constituting an entity. This greatly reduces the requirement on the quality of the dictionaries and makes our method generalize well with quite simple dictionaries. Empirical studies on four public NER datasets demonstrate the effectiveness of our proposed method. We have published the source code at https://github.com/v-mipeng/LexiconNER.