Jianguo Zhang


2020

pdf bib
MultiWOZ 2.2 : A Dialogue Dataset with Additional Annotation Corrections and State Tracking Baselines
Xiaoxue Zang | Abhinav Rastogi | Srinivas Sunkara | Raghav Gupta | Jianguo Zhang | Jindong Chen
Proceedings of the 2nd Workshop on Natural Language Processing for Conversational AI

MultiWOZ is a well-known task-oriented dialogue dataset containing over 10,000 annotated dialogues spanning 8 domains. It is extensively used as a benchmark for dialogue state tracking. However, recent works have reported presence of substantial noise in the dialogue state annotations. MultiWOZ 2.1 identified and fixed many of these erroneous annotations and user utterances, resulting in an improved version of this dataset. This work introduces MultiWOZ 2.2, which is a yet another improved version of this dataset. Firstly, we identify and fix dialogue state annotation errors across 17.3% of the utterances on top of MultiWOZ 2.1. Secondly, we redefine the ontology by disallowing vocabularies of slots with a large number of possible values (e.g., restaurant name, time of booking). In addition, we introduce slot span annotations for these slots to standardize them across recent models, which previously used custom string matching heuristics to generate them. We also benchmark a few state of the art dialogue state tracking models on the corrected dataset to facilitate comparison for future work. In the end, we discuss best practices for dialogue data collection that can help avoid annotation errors.

pdf bib
Discriminative Nearest Neighbor Few-Shot Intent Detection by Transferring Natural Language Inference
Jianguo Zhang | Kazuma Hashimoto | Wenhao Liu | Chien-Sheng Wu | Yao Wan | Philip Yu | Richard Socher | Caiming Xiong
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

Intent detection is one of the core components of goal-oriented dialog systems, and detecting out-of-scope (OOS) intents is also a practically important skill. Few-shot learning is attracting much attention to mitigate data scarcity, but OOS detection becomes even more challenging. In this paper, we present a simple yet effective approach, discriminative nearest neighbor classification with deep self-attention. Unlike softmax classifiers, we leverage BERT-style pairwise encoding to train a binary classifier that estimates the best matched training example for a user input. We propose to boost the discriminative ability by transferring a natural language inference (NLI) model. Our extensive experiments on a large-scale multi-domain intent detection task show that our method achieves more stable and accurate in-domain and OOS detection accuracy than RoBERTa-based classifiers and embedding-based nearest neighbor approaches. More notably, the NLI transfer enables our 10-shot model to perform competitively with 50-shot or even full-shot classifiers, while we can keep the inference time constant by leveraging a faster embedding retrieval model.

pdf bib
Find or Classify? Dual Strategy for Slot-Value Predictions on Multi-Domain Dialog State Tracking
Jianguo Zhang | Kazuma Hashimoto | Chien-Sheng Wu | Yao Wang | Philip Yu | Richard Socher | Caiming Xiong
Proceedings of the Ninth Joint Conference on Lexical and Computational Semantics

Dialog state tracking (DST) is a core component in task-oriented dialog systems. Existing approaches for DST mainly fall into one of two categories, namely, ontology-based and ontology-free methods. An ontology-based method selects a value from a candidate-value list for each target slot, while an ontology-free method extracts spans from dialog contexts. Recent work introduced a BERT-based model to strike a balance between the two methods by pre-defining categorical and non-categorical slots. However, it is not clear enough which slots are better handled by either of the two slot types, and the way to use the pre-trained model has not been well investigated. In this paper, we propose a simple yet effective dual-strategy model for DST, by adapting a single BERT-style reading comprehension model to jointly handle both the categorical and non-categorical slots. Our experiments on the MultiWOZ datasets show that our method significantly outperforms the BERT-based counterpart, finding that the key is a deep interaction between the domain-slot and context information. When evaluated on noisy (MultiWOZ 2.0) and cleaner (MultiWOZ 2.1) settings, our method performs competitively and robustly across the two different settings. Our method sets the new state of the art in the noisy setting, while performing more robustly than the best model in the cleaner setting. We also conduct a comprehensive error analysis on the dataset, including the effects of the dual strategy for each slot, to facilitate future research.

2019

pdf bib
Multi-Modal Generative Adversarial Network for Short Product Title Generation in Mobile E-Commerce
Jianguo Zhang | Pengcheng Zou | Zhao Li | Yao Wan | Xiuming Pan | Yu Gong | Philip S. Yu
Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Industry Papers)

Nowadays, more and more customers browse and purchase products in favor of using mobile E-Commerce Apps such as Taobao and Amazon. Since merchants are usually inclined to describe redundant and over-informative product titles to attract attentions from customers, it is important to concisely display short product titles on limited screen of mobile phones. To address this discrepancy, previous studies mainly consider textual information of long product titles and lacks of human-like view during training and evaluation process. In this paper, we propose a Multi-Modal Generative Adversarial Network (MM-GAN) for short product title generation in E-Commerce, which innovatively incorporates image information and attribute tags from product, as well as textual information from original long titles. MM-GAN poses short title generation as a reinforcement learning process, where the generated titles are evaluated by the discriminator in a human-like view. Extensive experiments on a large-scale E-Commerce dataset demonstrate that our algorithm outperforms other state-of-the-art methods. Moreover, we deploy our model into a real-world online E-Commerce environment and effectively boost the performance of click through rate and click conversion rate by 1.66% and 1.87%, respectively.